Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 8, 2013
|
|
---|---|---|
Article Number | 13034 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.2971/jeos.2013.13034 | |
Published online | 26 May 2013 |
- S. Tuohy, and A. Podoleanu, “Depth-resolved wavefront aberrations using a coherence-gated shack-hartmann wavefront sensor,” Opt. Express 18, 3458–3476 (2010). [CrossRef] [Google Scholar]
- J. Wang, and A. Podoleanu, “Time-domain coherence-gated Shack-Hartmann wave-front sensor,” Proc. SPIE 8091, 80911L (2011). [NASA ADS] [CrossRef] [Google Scholar]
- N. Goloborodko, V. Grygoruk, V. Kurashov, D. Podanchuk, A. Goloborodko, and M. Kotov, “Determination of surface defects by using the wavefront scanner,” Quantum Electronics and Opto-electronics 13, 65–69 (2010). [Google Scholar]
- N. Bai, L. Zhao, and P. Fang, “Digital shack-hartmann wavefront sensor for toroidalsurface measurement,” Proc. SPIE. 6616, 661644 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- T. Raymond, D. Neal, D. Topa, and T. Schmitz, “High-speed non-interferometric nanotopographic characterization of Si wafer surfaces,” Proc. SPIE 4809, 208–216 (2002). [NASA ADS] [CrossRef] [Google Scholar]
- A. Nutsch, L. Pfitzner, T. Grandin, X. Levecq, and S. Bucourt, “Determination of atness on patterned wafer surfaces using wavefront sensing methods,” Proc. SPIE. 7155, 71550Z (2008). [NASA ADS] [CrossRef] [Google Scholar]
- A. Nutsch, S. Bucourt, T. Grandin, I. Lazareva, and L. Pfitznera, “Wavefront sensor for highly accurate characterization of atness on wafer surfaces,” in Proceedings of the International Conference on Frontiers of Characterization and Metrology for Nanoelectronics, 188–192 (NIST, New York, 2009). [CrossRef] [Google Scholar]
- K. Nemoto, K. Watanabe, T. Hayashi, K. Tsugane, and Y. Tamaki, “Impact of silicon surface roughness on device performance and novel roughness measurement method,” in Proceedings of the Advanced Semiconductor Manufacturing Conference, 157–160 (IEEE/SEMI, Stresa, 2007). [Google Scholar]
- M. Nagel, A. Michalski, and H. Kurz, “Contact-free fault location and imaging with on-chip terahertz time-domain reectometry,” Opt. Express 19, 12509–12514 (2011). [NASA ADS] [CrossRef] [Google Scholar]
- C. Duran, A. Maznev, G. Merklin, A. Mazurenko, and M. Gostein, “Infrared reectometry for metrology of trenches in power devices,” in Proceedings of the Advanced Semiconductor Manufacturing Conference, 175–179 (IEEE/SEMI, Stresa, 2007). [Google Scholar]
- C. Chen, D. Lee, T. Pollock, and W. Whitaker, “Pulsed-terahertz reectometry for health monitoring of ceramic thermal barrier coatings,” Opt. Express 18, 3477–3486 (2010). [NASA ADS] [CrossRef] [Google Scholar]
- Y. Ghim, A. Suratkar, and A. Davies, “Reectometry-based wavelength scanning interferometry for thickness measurements of very thin wafers,” Opt. Express 18, 6522–6529 (2010). [NASA ADS] [CrossRef] [Google Scholar]
- J. Fontaine, J. Diels, C. Wang, and H. Sallaba, “Subpicosecond-time-domain reectometry,” Opt. Lett. 6, 405–407 (1981). [NASA ADS] [CrossRef] [Google Scholar]
- A. Liu, P. Wayner, and J. Plawsky, “Image scanning ellipsometry for measuring non-uniformfilm thickness profiles,” Appl. Optics 33, 1223–1229 (1994). [NASA ADS] [CrossRef] [Google Scholar]
- K. Haines, and B. Hilderbrand, “Contour generation by wavefront reconstruction,” Phys. Lett. 19, 10–11 (1965). [CrossRef] [Google Scholar]
- H. Fujiwara, Spectroscopic Ellipsometry Principles and Applications (Wiley, New Jersey, 2007). [CrossRef] [Google Scholar]
- U. Neuschaefer-Rube, W. Holzapfel, and F. Wirth, “Surface measurement applying focusing reection ellipsometry: configurations and error treatment,” Measurement 33, 163–171 (2003). [NASA ADS] [CrossRef] [Google Scholar]
- W. Teh, D. Marx, D. Grant, and R. Dudley, “Backside infrared interferometric patterned wafer thickness sensing for through-silicon-via (TSV) etch metrology,” IEEE T. Semiconduct. M. 23, 419–422 (2010). [CrossRef] [Google Scholar]
- M. Tsai, F. Chong, J. Lee, H. Wang, and C. Lee, “Defect detection and property evaluation of indium tin oxide conducting glass using optical coherence tomography,” Opt. Express 19, 7559–7566 (2011). [NASA ADS] [CrossRef] [Google Scholar]
- P. De Groot, and L. Deck, “Three-dimensional imaging by sub-Nyquist sampling of white-light interferograms,” Opt. Lett. 18, 1462–1464 (1993). [NASA ADS] [CrossRef] [Google Scholar]
- N. Tolk, M. Alles, R. Pasternak, X. Lu, R. Schrimpf, D. Fletwood, R. Dolan, and R. Stanley, “Oxide interface studies using second harmonic generation,” Microelectron. Eng. 84, 2089–2092 (2007). [CrossRef] [Google Scholar]
- M. Alles, R. Pasternak, X. Lu, N. Tolk, R. Schrimpf, D. Fletwood, R. Dolan, and R. Stanley, “Second harmonic generation for noninvasive metrology of silicon-oninsulator Wafers,” IEEE T. Semiconduct. M. 20, 107–113 (2007). [CrossRef] [Google Scholar]
- M. Peterson, P. Hayes, I. Martinez, L. Cass, J. Achtyl, E. Weiss, and F. Geiger, “Second harmonic generation imaging with a kHz amplifier,” Opt. Mater. 1, 57–66 (2011). [NASA ADS] [CrossRef] [Google Scholar]
- X. Li, L. Zhao, Z. Fang, A. Asundi, and X. Yin, “Surface measurement with Shack-Hartmann wavefront sensing technology,” Proc. SPIE 7155, 715515 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- C. Xu, N. Himebaugh, P. Kollbaum, L. Thibos, and A. Bradley, “Validation of a clinical Shack-Hartmann aberrometer,” Optometry Vision Sci. 80, 587–595 (2003). [Google Scholar]
- L. Carvalho, “Accuracy of Zernike polynomials in characterizing optical aberrations and the corneal surface of the eye,” Inves. Ophth. Vis. Sci. 46, 1915–1926 (2005). [CrossRef] [Google Scholar]
- S. Furman, and A. Tikhonravov, Basic of Optics of Multilayer Systems (Editions Frontieres, Gif-sur-Yvette Cedex, 1992). [Google Scholar]
- O. Heavens, “Computation of periodic multilayers,” Opt. Acta 33, 1463–1465 (1986). [CrossRef] [Google Scholar]
- M. Born, and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, Cambridge, 1999). [CrossRef] [Google Scholar]
- O. Heavens, “The propagation of lateral waves in absorbing media and thin films,” J. Mod. Opt. 21, 1–9 (1974). [NASA ADS] [Google Scholar]
- B. Sernelius, Surface Modes in Physics (Wiley, Berlin, 2001). [CrossRef] [Google Scholar]
- L. Jolissain, “Synthetic modeling of astronomical closed loop adaptive optics,” J. Europ. Opt. Soc. Public. 5, 10055 (2010). [CrossRef] [Google Scholar]
- V. Paeder, T. Scharf, H. Reffieux, P. Herzig, R. Voelkel, and K. Weible, “Microlenses with annular amplitude and phase masks,” J. Europ. Opt. Soc. Public. 2, 07005 (2007). [CrossRef] [Google Scholar]
- H. Hirayama, K. Kaneda, H. Yamashita, Y. Yamaji, and Y. Monden, “Visualization of optical phenomena caused by multilayer films with complex refractive indices,” in Proceedings of the 7th Pacific Conference on Computer Graphics and Applications, 504–509 (IEEE, Seoul, 2002). [Google Scholar]
- W. Drexler, and J. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer, Heidelberg, 2008). [CrossRef] [Google Scholar]
- W. Southwell, “Wave-front estimation from wave-front slope measurements,” J. Opt. Soc. Am. 70, 1917–1983 (1980). [NASA ADS] [CrossRef] [Google Scholar]
- D. Neal, and J. Mansell, “Application of Shack-Hartmann wavefront sensors to optical system calibration and alignment,” in Proceedings of the 2nd International Workshop on Adaptive Optics for Industry and Medicine 234–243 (World Scientific, Durham, 1999). [CrossRef] [Google Scholar]
- J. Busck, and H. Heseiberg, “Gated viewing and high-accuracy three-dimensional laser radar,” Appl. Optics 43, 4705–4710 (2004). [NASA ADS] [CrossRef] [Google Scholar]
- F. Abeles, “Sur la propagation des ondeselectromagnetiquesdans les Milieus Stratifies,” Ann. Phys.-Paris 3, 504–520 (1948). [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- K. Ohta, and H. Ishida, “Matrix formalism for calculation of electric field intensity of light in stratified multi-layered films,” Appl. Optics 29(13), 1952–1959 (1990). [NASA ADS] [CrossRef] [Google Scholar]
- P. Su, “Polynomial fitting method for reducing wavefront slope data,” Arizona University. (2009). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.