Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 7, 2012
|
|
---|---|---|
Article Number | 12029 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.2971/jeos.2012.12029 | |
Published online | 13 July 2012 |
- R. A. Soref, and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Elect. 23, 123–129 (1987). [NASA ADS] [CrossRef] [Google Scholar]
- S. Stepanov, and S. Ruschin, “Modulation of light by light in silicon-on-insulator waveguides,” Appl. Phys. Lett. 83, 5151–5153 (2003). [NASA ADS] [CrossRef] [Google Scholar]
- A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004). [CrossRef] [PubMed] [Google Scholar]
- L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keill, and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt. Express 13, 3129–3135 (2005). [NASA ADS] [CrossRef] [Google Scholar]
- V. M. N. Passaro, and F. Dell’Olio, “Scaling and Optimization of MOS Optical Modulators in Nanometer SOI Waveguides,” IEEE T. Nanotechnol. 7, 401–408 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- C. A. Barrios, V. R. Almeida, and M. Lipson, “Low-power-consumption short-length and high-modulation-depth silicon electrooptic modulator,” J. Lightwave Technol. 21, 1089–1098 (2003). [NASA ADS] [CrossRef] [Google Scholar]
- V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004). [CrossRef] [Google Scholar]
- S. Schönenberger, T. Stöferle, N. Moll, R. F. Mahrt, M. S. Dahlem, T. Wahlbrink, J. Bolten, et.al, “Ultrafast all-optical modulator with femtojoule absorbed switching energy in silicon-on-insulator,” Opt. Express 18, 22485–22496 (2010). [CrossRef] [Google Scholar]
- G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–525 (2010). [NASA ADS] [CrossRef] [Google Scholar]
- S. Preble, Q. Xu, B. Schmidt, and M. Lipson, “Ultrafast all-optical modulation on a silicon chip,” Opt. Lett. 30, 2891–2893 (2005). [NASA ADS] [CrossRef] [Google Scholar]
- K. Narayanan, A. Elshaari, and S. Preble, “Broadband all-optical modulation in hydrogenated-amorphous silicon waveguides,” Opt. Express 18, 9809–9814 (2010). [NASA ADS] [CrossRef] [Google Scholar]
- A. Kumar, and V. Rastogi, “Design and analysis of dual-shape-core large-mode-area optical fiber,” Appl. Optics 50, 119–124 (2011). [Google Scholar]
- C. Wirth, O. Schmidt, A. Kliner, T. Schreiber, R. Eberhardt, and A. Tünnermann, “High-power tandem pumped fiber amplifier with an output power of 2.9kW,” Opt. Lett. 36, 3061–3063 (2011). [NASA ADS] [CrossRef] [Google Scholar]
- K. Danekar, A. Khademian, and D. Shiner, “Blue laser via IR resonant doubling with 71% fiber to fiber efficiency,” Opt. Lett. 36, 2940–2942 (2011). [NASA ADS] [CrossRef] [Google Scholar]
- R. Zhou, Y. Ju, Y. Zhang, and Y. Wang, “High-powered millijoule pulse energy Tm3+-doped fiber amplifier at 2.05 µm,” Chin. Opt. Lett. 9, 071401–071401 (2011). [NASA ADS] [CrossRef] [Google Scholar]
- P. Hübner, C. Kieleck, S. D. Jackson, and M. Eichhorn, “High-power actively mode-locked sub-nanosecond Tm3+-doped silica fiber laser,” Opt. Lett. 36, 2483–2485 (2011). [CrossRef] [Google Scholar]
- D. B. S. Soh, S. E. Bisson, B. D. Patterson, and S. W. Moore, “High-power all-fiber passively Q-switched laser using a doped fiber as a saturable absorber: numerical simulations,” Opt. Lett. 36, 2536–2538 (2011). [NASA ADS] [CrossRef] [Google Scholar]
- M. Gorjan, R. Petkovšek, M. Marinček, and M. Čopič, “High-power pulsed diode-pumped Er:ZBLAN fiber laser,” Opt. Lett. 36, 1923–1925 (2011). [NASA ADS] [CrossRef] [Google Scholar]
- E. Gaubas, and J. Vanhellemont, “A simple technique for the separation of bulk and surface recombination parameters in silicon,” J. Appl. Phys. 80, 6293 (1996). [NASA ADS] [CrossRef] [Google Scholar]
- G. Coppola, A. Irace, G. Breglio, and A. Cutolo, “All-silicon mode-mixing router based on the plasma-dispersion effect,” J. Opt. A-Pure Appl. Op. 3, 346–354 (2001). [NASA ADS] [CrossRef] [Google Scholar]
- Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometer-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005). [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- T. S. Moss, G. J. Burrell, and B. Ellis, Semiconductor Opto-Electronics (Butterworths, London, 1975). [Google Scholar]
- R. A. Soref, and B. R. Bennett, “Kramers-Kronig analysis of electro-optical switching in silicon,” Proc. SPIE 704, 32–37 (1987). [NASA ADS] [CrossRef] [Google Scholar]
- B. Jalali, and S. Fathpour, “Silicon Photonics,” J. Lightwave Technol. 24, 4600–4615 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003). [NASA ADS] [CrossRef] [Google Scholar]
- R. A. Soref, and P. J. Lorenzo, “All-silicon active and passive guided-wave components for l=1.3 and 1.6 µm,” IEEE J. Quantum Elect. 22, 873–879 (1986). [NASA ADS] [CrossRef] [Google Scholar]
- S. M. Ryvkin, Photoelectric Effects in Semiconductors (Consultants Bureau, New York, 1964). [Google Scholar]
- R. A. Smith, Semiconductors (Cambridge University Press, Cambridge, 1978). [Google Scholar]
- V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004). [CrossRef] [Google Scholar]
- K. Preston, P. Dong, B. Schmidt, and M. Lipson, “High-speed all-optical modulation using polycrystalline silicon microring resonators,” Appl. Phys. Lett. 92, 15–17 (2008). [CrossRef] [Google Scholar]
- A. Chin, K. Y. Lee, B. C. Lin, and S. Horng, “Picosecond photoresponse of carriers in Si ion-implanted Si,” Appl. Phys. Lett. 69, 653–655 (1996). [NASA ADS] [CrossRef] [Google Scholar]
- B. Cowan, “Optical Damage Threshold of Silicon for Ultrafast Infrared Pulses,” AIP Conf. Proc. 877, 837–843 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- J. R. Chelikowsky, and M. I. Cohen “Electronic structure of silicon,” Phys. Rev. B 10, 5095–5107 (1974). [NASA ADS] [CrossRef] [Google Scholar]
- H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 µm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002). [NASA ADS] [CrossRef] [Google Scholar]
- X. Wang, Z.H. Shen, J. Lu, and X.W. Ni, “Laser-induced damage threshold of silicon in millisecond, nanosecond, and picosecond regimes,” J. Appl. Phys. 108, 033103 (2010). [Google Scholar]
- G. Cocorullo, and I. Rendina, “Thermo-optical modulation at 1.5 µm in a silicon etalon,” Electron. Lett. 28, 83–85 (1992). [NASA ADS] [CrossRef] [Google Scholar]
- S. Manipatruni, R. K. Dokania, B. Schmidt, N. Sherwood-Droz, C. B. Poitras, A. B. Apsel, and M. Lipson, “Wide temperature range operation of micrometer-scale silicon electro-optic modulators,” Opt. Lett. 33, 2185–2187 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- M. A. Green, and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovoltaics 3, 189–192 (1995). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.