Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 7, 2012
|
|
---|---|---|
Article Number | 12030 | |
Number of page(s) | 6 | |
DOI | https://doi.org/10.2971/jeos.2012.12030 | |
Published online | 25 July 2012 |
- J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystal: Modeling the Flow of Light (Princeton Univ. Press, Princeton, 2008). [Google Scholar]
- R. Coccioli, F.-R. Yang, K.-P. Ma, and T. Itoh, “Aperture-coupled patch antenna on UC-PBG substrate,” IEEE T. Microw. Theory 47, 2123–2130 (1999). [Google Scholar]
- F. Yang, and Y. Rahmat-Samii, “Microstrip antennas integrated with electromagnetic band-gap structures: A low mutual coupling design for array applications,” IEEE T. Antenn. Propag. 51, 2936–2946 (2003). [CrossRef] [Google Scholar]
- S.-G. Kim, H. Kim, H. Kang, and J.-G. Yook, “Signal integrity enhanced EBG structure with a ground reinforced trace,” IEEE T. Electron. Pack. M. 33, 284–288 (2010). [CrossRef] [Google Scholar]
- D. Nashaat, H. A. Elsadek, E. A. Abdallah, M. F. Iskander, and H. M. El Hennawy, “Ultrawide bandwidth 2×2 microstrip patch array antenna using electromagnetic band-gap structure (EBG),” IEEE T. Antenn. Propag. 59, 1528–1534 (2011). [CrossRef] [Google Scholar]
- J.-W. Baik, S.-M. Han, C. Jeong, J. Jeong, and Y.-S. Kim, “Compact ultra-wideband bandpass filter with EBG structure,” IEEE Microw. Wirel. Co. 18, 671–673 (2008). [CrossRef] [Google Scholar]
- M. Al-Joumayly, and N. Behdad, “A new technique for design of low-profile, second-order, bandpass frequency selective surfaces,” IEEE T. Antenn. Propag. 57, 452–459 (2009). [CrossRef] [Google Scholar]
- M. Rotaru, and J. Sykulski, “Compact electromagnetic bandgap structures for notch band in ultra-wideband applications,” Sensors 10, 9620–9629 (2010). [NASA ADS] [CrossRef] [Google Scholar]
- B. Mohajer-Iravani, and O. M. Ramahi, “Wideband circuit modal for planar EBG structures,” IEEE T. Adv. Packaging 33, 169–179 (2010). [CrossRef] [Google Scholar]
- M. Coulombe, S. F. Koodiani, and C. Caloz, “Compact elongated mushroom (EM)-EBG structure for enhancement of patch antenna array,” IEEE T. Antenn. Propag. 58, 1076–1086 (2010). [CrossRef] [Google Scholar]
- N. W. Ashcroft, and N. D. Mermin, Solid State Physics (Saunders College, Orlando, 1976). [Google Scholar]
- Rsoft Fullwave User Guide (RSoft Design Group, Ossning, 2003). [Google Scholar]
- C. Goffaux, J. Sánchez-Dehesa, and A. Levy Yeyati, “Evidence of fano-like interference phenomena in locally resonant materials,” Phys. Rev. Lett. 88, 225502-1–225502-4 (2002). [NASA ADS] [CrossRef] [Google Scholar]
- Y. S. E. Abdo, M. R. Chaharmir, J. Shaker, and Y. M. M. Antar, “Efficient excitation of an EBG guide designed using a defect triangular lattice of holes,” IEEE Antenn. Wirel. Pr. 9, 167–170 (2010). [Google Scholar]
- Y. S. E. Abdo, M. R. Chaharmir, J. Shaker, and Y. M. M. Antar, “Investigation of the transition between two different EBG waveguides,” IEEE Antenn. Wirel. Pr. 9, 1002–1005 (2010). [Google Scholar]
- D. M. Pozar, Microwave Engineering (Wiley, New York, 2005). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.