Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 7, 2012
Article Number 12028
Number of page(s) 15
DOI https://doi.org/10.2971/jeos.2012.12028
Published online 10 July 2012
  1. M. Abramowitz, and I. A. Stegun, Handbook of Mathematical Functions (Dover Publications, New York, 1972). [Google Scholar]
  2. L. C. Andrews, and R. L. Phillips, Mathematical Techniques for Engineers and Scientists (SPIE PRESS, Washington, 2003). [CrossRef] [Google Scholar]
  3. H. M. Anita, Numerical Methods for Scientists and Engineers (Birkhäuser Verlag, Basel, 2002). [Google Scholar]
  4. M. A. Arain, V. Quetschke, J. Gleason, L. F. Williams, M. Rakhmanov, J. Lee, R. J. Cruz, et.al, “Adaptive beam shaping by controlled thermal lensing in optical elements,” Appl. Optics 46, 2153 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  5. A. Burvall, A. Smith, and C. Dainty, “Elementary functions, propagation of partially coherent light,” J. Opt. Soc. Am. A 26, 1721 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  6. J. A. Campbell, and F. Rainer, “Optical glasses for high-peak-power laser applications,” Proc. SPIE 1761, 246 (1992). [Google Scholar]
  7. G. F. Carey, and W. F. Spotz, “Higher-order compact mixed methods,” Commun. Numer. Meth. En. 13, 553 (1997). [CrossRef] [Google Scholar]
  8. S. Celestin, Z. Bonaventura, B. Zeghondy, A. Bourdon, and P. Ségur, “The use of the ghost fluid method for Poisson’s equation to simulate streamer propagation in point-to-plane and point-to-point geometries,” J. Phys. D Appl. Phys. 42, 065203 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  9. P. C. Y. Chang, J. G. Walker, and K. I. Hopcraft, “Raytracing in absorbing media,” J. Quant. Spectrosc. Ra. 96, 327 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  10. W. Dahmen, and A. Reusken, Numerik für Ingenieure und Naturwissenschaftler (Springer-Verlag, Berlin, 2008). [Google Scholar]
  11. H. Dallmann, and K.-H. Elster, Einführung in die höhere Mathematik; Bd. III (Gustav Fischer Verlag, Jena, 1992). [Google Scholar]
  12. A. Gatej, U. Thombansen, and P. Loosen, “Simulation des thermischen Linseneffekts in hochbelasteten Lasersystemen,” Photonik 5, 54 (2011). [Google Scholar]
  13. L. Gonzalez, S. Guha, J. W. Rogers, and Q. Sheng, “An Effective z-Stretching Method for Paraxial Light Beam Propagation Simulations,” arXiv, 1006.1607v1 (2010). [Google Scholar]
  14. H. Gross, Modellierung von Lichtquellen und Propagation partiell kohärenter Strahlung durch optische Systeme: Abschlussbericht; Verbundvorhaben: Charakterisierung, Modellierung und Propagation der Strahlung realer Lichtquellen in optischen Systemen (RIOS) (Carl Zeiss SMT AG, Oberkochen, 2007). [Google Scholar]
  15. C. Großmann, and H.-G. Roos, Numerische Behandlung partieller Differentialgleichungen (Teubner, Leipzig, 2005). [Google Scholar]
  16. H. Haiyang, F. Zhengxiu, and L Ye, “Measuring Weak Absorptance of Thin Film Coatings by Surface Thermal Lensing Technique,” Laser Phys. 10, 633 (2000). [Google Scholar]
  17. P. Herwig, U. Klotzbach, M. Walther, J. Hauptmann, A. Wetzig, and E. Beyer, “Aberrations induced by High Brightness Lasers,” Physics Procedia 12, 779 (2011).LiM 2011. [NASA ADS] [CrossRef] [Google Scholar]
  18. C. Hong, F. Zhi-gang, C. Shou-qian, and C. Yi-ming, “Impact of the temperature gradient on optical system parameters, modeling and analysis,” Proc. SPIE 7506, 75060 (2009). [Google Scholar]
  19. A. Hornberg, “Propagation of Gaussian beams,” Laser Technik Journal 2, 75 (2005). [CrossRef] [Google Scholar]
  20. I. H. Hutchinson, “Cartesian Coordinates, Oblique Boundary, Finite Differences and Interpolation,” arXiv, 1105.1356v1 (2011). [Google Scholar]
  21. R. Jedamzik, “Brillant imaging. Glasses with high transmission play a major role in many modern day applications,” Optik & Photonik 6, 31 (2011). [CrossRef] [Google Scholar]
  22. M. Kar, and B. S. Verma, “Improvements in the determination of extinction coefficients of a thin film using an envelope method,” J. Opt. A-Pure Appl. Opt. 7, 599 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  23. M. Klee, and R. Plonsby, “Finite difference solutions for biopotentials of axially symmetric cells,” Biophys. J. 12, 1661 (1972). [NASA ADS] [CrossRef] [Google Scholar]
  24. C. A. Klein, “High-power CW Laser Windows, Edge-Cooled or Face-Cooled?,” Proc. SPIE (High Heat Flux Engineering) 1739, 230 (1993). [NASA ADS] [CrossRef] [Google Scholar]
  25. C. A. Klein, “High-energy laser windows, case of fused silica,” Opt. Eng. 49, 091006 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  26. G. A. Korn, and T. M. Korn, Mathematical Handbook for Scientists and Engineers (Dover Publications, New York, 2000). [Google Scholar]
  27. H. Kozaki, and S. Sakurai, “Characteristics of a Gaussian beam at a dielectric interface,” J. Opt. Soc. Am. 68, 508 (1978). [NASA ADS] [CrossRef] [Google Scholar]
  28. E. Kreyszig, Advanced Engineering Mathematics (John Wiley & Sons, Hoboken, 2006). [Google Scholar]
  29. J. Kuhnert, and S. Tiwari, “Grid free method for solving the Poisson equation,” Berichte des Fraunhofer ITWM 25 (2001). [Google Scholar]
  30. M.-C. Lai, and Y.-H. Tseng, “A fast iterative solver for the variable coefficient diffusion equation on a disk,” J Comput. Phys. 208, 196 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  31. L. D. Landau, and E. M. Lifschitz, Lehrbuch der Theoretischen Physik; Bd. VII, Elastizitätstheorie (Akademie Verlag, Berlin, 1991). [Google Scholar]
  32. C. B. Lang, and N. Pucker, Mathematische Methoden in der Physik Elsevier, Amsterdam, 2005). [CrossRef] [Google Scholar]
  33. N. N. Lebedev, I. P. Skalskaya, and Y. S. Uflyand, Worked problems in applied mathematics (Dover Publications, New York, 1979). [Google Scholar]
  34. W. Macke, Thermodynamik und Statistik (Akademische Verlagsge-sellschaft Geest und Portig, Leipzig, 1963). [Google Scholar]
  35. O. Märten, R. Kramer, H. Schwede, S. Wolf, and V. Brandl, “Focus Analysis, Part 1,” Laser & Photonics 2, 48 (2008). [Google Scholar]
  36. A. Miks, and J. Novak, “Propagation of Gaussian beam in optical system with aberrations,” Optik - Int. J. Light Electron Opt. 114, 437 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  37. W. F. Mitchell, and M. A. McClain, “A Survey of hp-Adaptive Strategies for Elliptic Partial Differential Equations,” in Recent Advantages in Computational and Applied Mathematics, T. E. Simons, ed., 227 (Springer, Berlin, 2011). [CrossRef] [Google Scholar]
  38. I. Miyamoto, K. Cvecek, and M. Schmidt, “Evaluation of nonlinear absorptivity in internal modification of bulk glass by ultrashort laser pulses,” Opt. Express 19, 10714 (2011). [CrossRef] [Google Scholar]
  39. R. M. More, and K. Kosaka, “Wave-front curvature in geometrical optics,” Phys. Rev. E 57, 6127 (1998). [NASA ADS] [CrossRef] [Google Scholar]
  40. I. Moreno, and C.-C. Sun, “Modelling the radiation pattern of LED’s,” Opt. Express 16, 1808 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  41. M. J. Moritz, “Radial distribution of temperature in a thin lens due to absorption of light and heat conduction,” Optik - Int. J. Light Electron Opt. 122, 1050 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  42. T. N. Narasimhan, “Thermal conductivity through the 19th century,” Phys. Today 63, 36 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  43. F. E. Nicodemus, “Radiance,” Am. J. Phys. 31, 368 (1963). [Google Scholar]
  44. C. T. O’Sullivan, “Newton’s law of cooling – A critical assessment,” Am. J. Phys. 58, 956 (1990). [CrossRef] [Google Scholar]
  45. T. Pang, Introduction to Computational Physics (Cambridge Universitiy Press, Cambridge, 1997). [Google Scholar]
  46. F. Pedrotti, L. Pedrotti, W. Bausch, and H. Schmidt, Optik für Ingenieure (Springer-Verlag, Berlin, 2002). [CrossRef] [Google Scholar]
  47. R. Pitka, S. Bohrmann, H. Stöcker, and G. Terlecki, Physik – Der Grundkurs (Verlag Harri Deutsch, Frankfurt, 2002). [Google Scholar]
  48. H. Qin, and J. Yang, “Novel meshless method for point set surface processing,” Opt. Eng. 47, 047005 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  49. R. Ramamoorthi, and Pat Hanrahan, “On the relationship between radiance and irradiance, determining he illumination from images of a convex Lambertian object,” J. Opt. Soc. Am. A 18, 2448 (2001). [NASA ADS] [CrossRef] [Google Scholar]
  50. C. Schaefer, Einführung in die Theoretische Physik; Band 2, Theorie der Wärme, Molekular-kinetische Theorie der Materie (Walter De Gruyter, Berlin, 1958). [Google Scholar]
  51. Datenblatt N-BK7, Stand 19.09.2007 www.schott.com. [Google Scholar]
  52. Datenblatt N-BK7HT, Stand 20.05.2010 www.schott.com. [Google Scholar]
  53. S. Schröder, M. Kamprath, A. Duparé, and A. Tünnermann, “Bulk scattering properties of synthetic fused silica at 193 nm,” Opt. Express 14, 10537 (2006). [CrossRef] [Google Scholar]
  54. D. L. Shealy, and D. G. Burkhard, “Analytical illuminance calculation in a multi-interface optical system,” Opt. Acta 22, 485 (1975). [CrossRef] [Google Scholar]
  55. G. G. Slyusarev, Aberration and Optical Design Theory (Institute of Physics Publishing, London, 1984). [Google Scholar]
  56. A. Sommerfeld, Vorlesungen über Theoretische Physik; Bd. VI, Partielle Differentialgleichungen der Physik (Verlag Harri Deutsch, Frankfurt, 1978). [Google Scholar]
  57. K. Starke, and D. Ristau, “Charakterisierung von Laseroptiken für die Femtonik,” Laser Technik Journal 2, 76 (2005). [CrossRef] [Google Scholar]
  58. S. Tryka, “Spherical object in radiation field from Gaussian source,” Opt. Express 12, 5925 (2005). [CrossRef] [Google Scholar]
  59. P. Twomey, C. O’Sullivan, and J. O’Riordan, “An experimental investigation of the role of radiation in laboratory bench-top experiments in thermal physics,” Eur. J. Phys. 30, 559 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  60. M. Vollmer, “Newton’s law of cooling revisited,” Eur. J. Phys. 30, 1063 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  61. P. Yan, A. Xu, and M. Gong, “Numerical analysis of temperature distributions in Yb-doped double-clad fiber lasers with consideration of radiative heat transfer,” Opt. Eng. 45, 124201 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  62. S. Yildirim, “Exact and Numerical Solutions of Poisson Equation for Electrostatic Potential Problems,” Math. Probl. Eng. 2008, 578723 (2008). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.