Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 6, 2011
|
|
---|---|---|
Article Number | 11039 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.2971/jeos.2011.11039 | |
Published online | 22 August 2011 |
- A. Kirsch, and R. Kress, “On an integral equation of the first kind in inverse acoustic scattering”, Inverse Probl., Internat. Schriftenreihe Numer. Math. 77, 93–102 (1986). [Google Scholar]
- David Colton, and Rainer Kress, Inverse Acoustic and Electromagnetic Scattering Theory (Springer, 1998). [CrossRef] [Google Scholar]
- L. B. Felsen, and N. Marcuvitz, Radiation and Scattering of Waves (Prentice-Hall, New Jersey, 1973). [Google Scholar]
- Y. Rahmat-Samii, R. Mittra, and P. Parhami, “Evaluation of Sommerfeld integrals for lossy half-space problems”, Electromagnetics 1, 1–28 (1981). [CrossRef] [Google Scholar]
- V. D. Kupradze, “On the approximate solution of problems of mathematical physics”, Russ. Math. Surv.+ 22, 59–107 (1967). [NASA ADS] [Google Scholar]
- G. Fairweather, A. Karageorghis, and P. A. Martin, “The method of fundamental solutions for scattering and radiation problems”, Eng. Anal. Bound. Elem. 27, 759–769 (2003). [CrossRef] [Google Scholar]
- G. Fairweather, and A. Karageorghis, “The method of fundamental solutions for elliptic boundary value problems”, Adv. Comput. Math. 9, 69–95 (1998). [CrossRef] [Google Scholar]
- A. Doicu, Y. A. Eremin, and T. Wriedt, Acoustic & Electromagnetic Scattering Analysis Using Discrete Sources (Academic Press, 2000). [Google Scholar]
- D. I. Kaklamani, and H. T. Anastassiu, “Aspects of the method of auxiliary sources (MAS) in computational electromagnetics”, IEEE Antennas Propag. Mag. 44, 48–64 (2002). [Google Scholar]
- Y. Leviatan, and A. Boag, “Analysis of Electromagnetic Scattering from Dielectric Cylinders Using a Multifilament Current Model”, IEEE Trans. Antennas Propag. 35, 1119–1127 (1987). [CrossRef] [Google Scholar]
- J. Tal, and Y. Leviatan, “Inverse scattering analysis for perfectly conducting cylinders using a multifilament current model”, Inverse Probl. 6, 1065–1074 (1990). [NASA ADS] [CrossRef] [Google Scholar]
- C.-Y. Lin, and Y.-W. Kiang, “Inverse Scattering for Conductors by the Equivalent Source Method”, IEEE Trans. Antennas Propag. 44, 310–316 (1996). [CrossRef] [Google Scholar]
- F. Obelleiro, L. Landesa, J. L. Rodríguez, and M. R. Pino, “Fast Two-Dimensional Reconstruction of Impenetrable Objects Using Multipolar Equivalent Sources”, IEEE T. Magn. 35, 1570–1573 (1999). [NASA ADS] [CrossRef] [Google Scholar]
- C. J. S. Alves, and N. F. M. Martins, “The direct Method of Fundamental Solutions and the inverse Kirsch-Kress Method for the reconstruction of elastic inclusions or cavities”, J. Integral Equations Appl. 21, 153–178 (2009). [Google Scholar]
- M. Karamehmedović, P.-E. Hansen, and T. Wriedt, “An efficient scattering model for PEC and penetrable nanowires on a dielectric substrate”, J. Eur. Opt. Soc. Rapid Publ. 6, 11021 (2011). [CrossRef] [Google Scholar]
- Elena Eremina, Yuri Eremin, and Thomas Wriedt, “Discrete sources method for simulation of resonance spectra of nonspherical nanoparticles on a plane surface”, Opt. Commun. 246, 405–413 (2005). [NASA ADS] [CrossRef] [Google Scholar]
- Elena Eremina, Yuri Eremin, and Thomas Wriedt, “Analysis of the light scattering properties of a gold nanorod on a plane surface via discrete sources method”, Opt. Commun. 273, 278–285 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- COMSOL Multiphysics demonstration CD-ROM can be requested at http://www.comsol.com. [Google Scholar]
- W. B. J. Zimmerman, Multiphysics Modelling with Finite Element Methods (World Scientific, 2006). [CrossRef] [Google Scholar]
- E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Boston, 1985). [Google Scholar]
- I. V. Lindell, and E. Alanen, “Exact Image Theory for the Sommerfeld Half-Space Problem, Part I: Vertical Magnetic Dipole”, IEEE T. Antenn. Propag. AP–32, 126–133 (1984). [CrossRef] [Google Scholar]
- I. V. Lindell, and E. Alanen, “Exact Image Theory for the Sommerfeld Half-Space Problem, Part III: General Formulation”, IEEE T. Antenn. Propag. AP–32, 1027–1032 (1984). [CrossRef] [Google Scholar]
- A. Wächter, and L. T. Biegler, “On the Implementation of a Primal-Dual Interior Point Filter Line Search Algorithm for Large-Scale Non-linear Programming”, Math. Program. 106, 25–57 (2006). [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.