Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 6, 2011
Article Number 11038
Number of page(s) 6
DOI https://doi.org/10.2971/jeos.2011.11038
Published online 31 July 2011
  1. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber”, Rev. Mod. Phys. 78, 1135–1184 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  2. R. Buczynski, H. T. Bookey, D. Pysz, R. Stepien, I. Kujawa, J. E. McCarthy, A. J. Waddie, A. K. Kar, and M. R. Taghizadeh, “Super-continuum generation up to 2.5 µm in photonic crystal fiber made of lead-bismuth-galate glass”, Laser Phys. Lett. 7, 666–672 (2010). [CrossRef] [Google Scholar]
  3. X. Yu, P. Shum, N. Q. Ngo, W. J. Tong, J. Luo, G. B. Ren, Y. D. Gong, and J. Q. Zhou, “Silica-Based Nanostructure Core Fiber”, IEEE Photonic Tech. L. 31, 1480 - 1482, (2007). [Google Scholar]
  4. A. Wang A. George, J. Liu, J. Knight, “Highly birefringent lamellar core fiber”, Opt. Express 13, 5988–5993 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  5. K. Schuster, J. Kobelke, S. Grimm, A. Schwuchow, J. Kirchhof, H. Bartelt, A. Gebhardt, P. Leproux, V. Couderc, and W. Urbanczyk, “Microstructured fibers with highly nonlinear materials”, Opt. Quant. Electron. 39, 1057–1069 (2007). [CrossRef] [Google Scholar]
  6. K. Saitoh, N. Florous, and M. Koshiba, “Ultra-flattened chromatic dispersion controllability using a defected-core photonic crystal fiber with low confinement losses”, Opt. Express 13, 8365–8371 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  7. B. Kibler, P.-A. Lacourt, F. Courvoisier, and J.M. Dudley, “Soliton spectral tunnelling in photonic crystal fibre with sub-wavelength core defect”, Electron Lett. 43, 967–968 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  8. G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core”, Nat. Photonics 1, 115–118 (2007). [Google Scholar]
  9. Y. Ruan, H. Ebendorff-Heidepriem, S. Afshar, and T. M. Monro, “Light confinement within nanoholes in nanostructured optical fibers”, Opt. Express 18, 26018–26026 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  10. B.-W. Liu, M.-L. Hu, X.-H. Fang, Y.-F. Li, L. Chai, C.-Y. Wang, W. Tong, J. Luo, A. A. Voronin, A. M. Zheltikov, “Stabilized soliton self-frequency shift and 0.1-PHz sideband generation in a photonic-crystal fiber with an air-hole-modified core”, Opt. Express 16, 14987–14996 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  11. B. Ung, M. Skorobogatiy, “Chalcogenide microporous fibers for linear and nonlinear applications in the mid-infrared”, Opt. Express 18, 8647–8659 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  12. COMSOL Multiphysics 3.4 (2007) http://www.comsol.com. [Google Scholar]
  13. D. Lorenc, M. Aranyosiova, R. Buczynski, R. Stepien, I. Bugar, A. Vincze, D. Velic, “Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers”, Appl. Phys. B - Lasers O. 93, 531 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  14. R. Buczynski, D. Pysz, R. Stepien, A.J. Waddie, I. Kujawa, R. Kasztelanic, M. Franczyk, M.R. Taghizadeh, “Supercontinuum generation in photonic crystal fibers with nanoporous core made of soft glass”, Laser Phys. Lett. 8, 443–448 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  15. S. V. Afshar, W. Q. Zhang, H. Ebendorff-Heidepriem, and T. M. Monro, “Small core optical waveguides are more nonlinear than expected: experimental confirmation”, Opt. Lett. 34, 3577–3579 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  16. J. C. Travers, M. H. Frosz, and J. M. Dudley, “Nonlinear fibre optics overview” (Chap. 3) in Supercontinuum generation in optical fibers, J. M. Dudley and J. R. Taylor, eds. (Cambridge University Press, 2010) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.