Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 6, 2011
|
|
---|---|---|
Article Number | 11037 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.2971/jeos.2011.11037 | |
Published online | 28 June 2011 |
- A. K. Oyelere, P. C. Chen, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Peptide-conjugated gold nanorods for nuclear targeting”, Bioconjugate Chem. 18, 1490–1497 (2007). [CrossRef] [Google Scholar]
- C. Loo, A. Lowery, N. J. Halas, J. L. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy”, Nano Lett. 5, 709–711 (2005). [Google Scholar]
- D. Pissuwan, S.M. Valenzuela, C.M. Miller, and M.B. Cortie, “A golden bullet? Selective targeting of Toxoplasma gondii tachyzoites using antibody-functionalized gold nanorods”, Nano Lett. 7 3808–3812 (2007). [Google Scholar]
- S. R. Sershen, S. L. Westcott, N. S. Halas, and J. L. West, “Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery”, J. Biomed. Mater. Res. 51, 293–298 (2000). [CrossRef] [Google Scholar]
- D. A. Boyd, L. Greengard, L. Brongersma, M. Y. El-Naggar, and D. G. Goodwin, “Plasmon-assisted chemical vapor deposition”, Nano Lett. 6, 2592–2597 (2006). [Google Scholar]
- X. Miao, B. K. Wilson, and L. Y. Lin, “Localized surface plasmon assisted microfluidic mixing”, Appl. Phys. Lett. 92, 124108–1 – 124108–3 (2008). [Google Scholar]
- G. L. Liu, J. Kim, Y. Lu and L. Lee, “Optofluidic control using photothermal nanoparticles”, Nat. Mater. 5, 27–32 (2005). [Google Scholar]
- R. Q. G. Baffou and C. Girard, “Heat generation in plasmonic nanostructures: Influence of morphology”, Appl. Phys. Lett. 94, 153109 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- D. Milam, R. Bradbury, and M. Bass, “Laser damage threshold for dielectric coatings as determined by inclusions”, Appl. Phys. Lett. 23, 654–657 (1973). [NASA ADS] [CrossRef] [Google Scholar]
- N. Zaitseva, L. Carman, I. Smolsky, R. Torres, and M. Yan, “The effect of impurities and supersaturation on the rapid growth of KDP crystals”, J. Cryst. Growth 204, 512Ű–524 (1999). [CrossRef] [Google Scholar]
- F. Kahnert, “Numerical methods in electromagnetic scattering theory”, J. Quant. Spectrosc. Ra. 79, 775–824 (2003). [CrossRef] [Google Scholar]
- K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media”, IEEE Trans. Ant. Prop. AP-14, 302–307 (1966). [Google Scholar]
- K. S. Yee and J. S. Chen, “The finite-difference time-domain (FDTD) and the finite-volume time-domain (FVTD) methods in solving Maxwell’s equations”, IEEE Trans. Ant. Prop. 45, 354–363 (1997). [CrossRef] [Google Scholar]
- J. L. Volakis, A. Chatterjee and L. C. Kempel, “Review of the finiteelement method for three-dimensional electromagnetic scattering”, J. Opt. Soc. Am. A 11, 1422–1422 (1994). [NASA ADS] [CrossRef] [Google Scholar]
- X. Wei, A. J. Wachters and H. P. Urbach, “Finite-element model for three-dimensional optical scattering problems”, J. Opt. Soc. Am. A 24, 866–881 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- G. Demésy, F. Zolla, A. Nicolet and M. Commandré, “All-purpose finite element formulation for arbitrarily shaped crossed-gratings embedded in a multilayered stack”, J. Opt. Soc. Am. A 27, 878–889 (2008). [Google Scholar]
- G. Demésy, F. Zolla, A. Nicolet, M. Commandré and C. Fossati, “The finite element method as applied to the diffraction by an anisotropic grating”, Opt. Express 15, 18089–18102 (2007). [CrossRef] [Google Scholar]
- G. Demésy, F. Zolla, A. Nicolet, and M. Commandré, “Versatile full-vectorial finite element model for crossed gratings”, Opt. Lett. 34, 2216–2218 (2009). [CrossRef] [Google Scholar]
- M. Perry, B. Stuart, P. Banks, M. Feit, V. Yanovsky, and A. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials”, J. Appl. Phys. 85, 6803 (1999). [NASA ADS] [CrossRef] [Google Scholar]
- C. Mätzler, “MATLAB Functions for Mie scattering and absorption”, IAP Res. Rep (2002). [Google Scholar]
- R. W. Hopper and D. P. Uhlmann, “Mechanism of Inclusion Damage in Laser Glass”, J. Appl. Phys. 41, 4023 (1970). [CrossRef] [Google Scholar]
- J. Néauport, E. Lavastre, G. Razé, G. Dupuy, N. Bonod, M. Balas, G. de Villele, J. Flamand, S. Kaladgew, and F. Desserouer, “Effect of electric field on laser induced damage threshold of multilayer dielectric gratings”, Opt. Express 15, 12508–12522 (2007). [CrossRef] [Google Scholar]
- X. Jing, J. Shao, J. Zhang, Y. Jin, H. He, and Z. Fan, “Calculation of femtosecond pulse laser induced damage threshold for broadband antireflective microstructure arrays”, Opt. Express 17, 24137–24152 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- F. Zolla and R. Petit, “Method of fictitious sources as applied to the electromagnetic diffraction of a plane wave by a grating in conical diffraction mounts”, J. Opt. Soc. Am. A 13, 796–802 (1996). [CrossRef] [Google Scholar]
- Y. Ould Agha, F. Zolla, A. Nicolet, and S. Guenneau, “On the use of PML for the computation of leaky modes : an application to gradient index MOF”, COMPEL 27–1, 95–109 (2008). [CrossRef] [Google Scholar]
- A. Bossavit and I. Mayergoyz, “Edge-elements for scattering problems”, IEEE T. Magn. 25, 2816–2821 (1989). [NASA ADS] [CrossRef] [Google Scholar]
- P. Dular, A. Nicolet, A. Genon, and W. Legros, “A discrete sequence associated with mixed finite elements and its gauge condition for vector potentials”, IEEE T. Magn. 31, 1356–1359 (1995). [NASA ADS] [CrossRef] [Google Scholar]
- G. Bao, Z. Chen and H. Wu, “Adaptive finite-element method for diffraction gratings”, J. Opt. Soc. Am. A 22, 1106–1114 (2005). [CrossRef] [Google Scholar]
- C. W. Carr, J. B. Trenholme, and M. L. Spaeth, “Effect of temporal pulse shape on optical damage”, Appl. Phys. Lett. 90, 041110 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- M. Vujicic, “Finite element solution of transient heat conduction using iterative solvers”, Eng. Computation 23, 408–431 (2006). [CrossRef] [Google Scholar]
- P. N. Brown, A. C. Hindmarsh, and L. R. Petzold, “Using Krylov methods in the solution of large-scale differential-algebraic systems”, SIAM J. Sci. Comput. 15, 1467Ű–1488 (1994). [NASA ADS] [CrossRef] [Google Scholar]
- A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker, and C. S. Woodward, “SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers”, ACM T. Math. Software (TOMS) 31, 363–396 (2005). [CrossRef] [Google Scholar]
- H. Bercegol, A. Boscheron, J. M. Di-Nicola, E. Journot, L. Lamaignère, J. Néauport and G. Razé, “Laser damage phenomena relevant to the design and operation of an ICF laser driver”, J. Phys. Conf. Ser. 112, 032013 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- P. Allenspacher, W. Riede, and D. Wernham, “Laser qualification testing of space optics”, P. SPIE. IS&T Elect. Im. 6403, 64030T (2006). [NASA ADS] [Google Scholar]
- C.W. Carr, H.B. Radousky, A.M. Rubenchik, M.D. Feit, and S.G. Demos, “Localized dynamics during laser-induced damage in optical materials”, Phys. Rev. Lett. 92, 087401 (2004). [NASA ADS] [CrossRef] [Google Scholar]
- J. Néauport, P. Cormont, P. Legros, C. Ambard, and J. Destribats, “Imaging subsurface damage of grinded fused silica optics by confocal fluorescence microscopy”, Opt. Express 17, 3543–3554 (2009). [CrossRef] [Google Scholar]
- N. Bloembergen, “Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surface of transparent dielectrics”, Appl. Opt. 12, 661–664 (1973). [CrossRef] [Google Scholar]
- F. Y. Génin, A. Salleo, T. V. Pistor, and L. L. Chase, “Role of light intensification by cracks in optical breakdown on surfaces”, J. Opt. Soc. Am. A 18, 2607–2616 (2001). [CrossRef] [Google Scholar]
- K. Bien-Aimé, C. Belin, L. Gallais, P. Grua, E. Fargin, J. Néauport and I. Tovena-Pecault, “Impact of storage induced outgassing organic contamination on laser induced damage of silica optics at 351 nm”, Opt. Express 17, 18703–18713 (2009). [CrossRef] [Google Scholar]
- R. Chow, S. Falabella, G. E. Loomis, F. Rainer, C. J. Stolz, and M. R. Kozlowski, “Reactive evaporation of low-defect density hafnia”, Appl. Opt. 23, 174 (1993). [NASA ADS] [Google Scholar]
- M. Reichling, A. Bodemann, and N. Kaiser, “Defect induced laser damage in oxide multilayer coatings for 248 nm”, Thin Solid Films 320, 264–279 (1998). [NASA ADS] [CrossRef] [Google Scholar]
- S. Papernov and A. Schmid, “Localized absorption effects during 351 nm, pulsed laser irradiation of dielectric multilayer thin films”, J. Appl. Phys. 82, 5422 (1997). [NASA ADS] [CrossRef] [Google Scholar]
- D. Ristau, M. Jupé, and K. Starke, “Laser damage thresholds of optical coatings”, Thin Solid Films 518, 1607–1613 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- J. J. DeYoreo, Z. U. Rek, N. P. Zaitseva, and B. W. Woodsa, “Sources of optical distortion in rapidly grown crystals of KH2PO4”, J. Cryst. Growth 166, 291Ű–297 (1996). [CrossRef] [Google Scholar]
- N. Y. Garces, K. T. Stevens, L. E. Halliburton, S. G. Demos, H. B. Radousky, and N. P. Zaitseva, “Identification of electron and hole traps in KH2PO4 crystals”, J. Appl. Phys. 89, 47–52 (2001). [NASA ADS] [CrossRef] [Google Scholar]
- A. Hildenbrand, F.R. Wagner, J.-Y. Natoli, and M. Commandré, “Nanosecond laser induced damage in RbTiOPO4: The missing influence of crystal quality”, Opt. Express 17, 18273–18280 (2009). [Google Scholar]
- L. Gallais, P. Voarino, and C. Amra, “Optical measurement of size and complex index of laser-damage precursors: the inverse problem”, JOSA B 21, 1073–1080 (2004). [NASA ADS] [CrossRef] [Google Scholar]
- J. Trenholme, M. Feit, and A. Rubenchik, “Size-selection initiation model extended to include shape and random factors”, Proc. of SPIE 5991, 59910X (2005). [CrossRef] [Google Scholar]
- F. Bonneau, P. Combis, J. Rullier, J. Vierne, B. Bertussi, M. Commandre, L. Gallais, J. Natoli, I. Bertron, F. Malaise, et al., “Numerical simulations for description of UV laser interaction with gold nanoparticles embedded in silica”, Appl. Phys. B-Lasers O. 78, 447–452 (2004). [NASA ADS] [CrossRef] [Google Scholar]
- G. Duchateau, “Simple models for laser-induced damage and conditioning of potassium dihydrogen phosphate crystals by nanosecond pulses”, Opt. Express 17, 10434–10456 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- C. J. Stolz, M. D. Feit, and T. V. Pistor, “Laser intensification by spherical inclusions embedded within multilayer coatings”, Appl. Optics 45, 1495–1601 (2006). [Google Scholar]
- C. Dorrer, “High-damage-threshold beam shaping using binary phase plates”, Opt. Lett. 34, 2330–2332 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- L. Gallais, J. Capoulade, J.Y. Natoli and M. Commandré, “Investigation of nanodefect properties in optical coatings by coupling measured and simulated laser damage statistics”, J. Appl. Phys. 104, 053120 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- Y. S. Touloukian, Thermo-physical properties of matter (IFI/Plenum, 1970). [Google Scholar]
- D. Lide, CRC handbook of chemistry and physics (CRC press, 1993). [Google Scholar]
- G. Duchateau and A. Dyan, “Coupling statistics and heat transfer to study laser-induced crystal damage by nanosecond pulses”, Appl. Opt. 23, 3796 (1984). [NASA ADS] [CrossRef] [Google Scholar]
- S. G. Demos, P. DeMange, R. A. Negres, and M. D. Feit, “Investigation of the electronic and physical properties of defect structures responsible for laser-induced damage in DKDP crystals”, Opt. Express 18, 13788–13804 (2010). [NASA ADS] [CrossRef] [Google Scholar]
- S. Reyné, G. Duchateau, J. Natoli, and L. Lamaignère, “Laser-induced damage of KDP crystals by 1w nanosecond pulses: influence of crystal orientation”, Opt. Express 17 21652–21665 (2009). [CrossRef] [Google Scholar]
- C. Carr, H. Radousky, A. Rubenchik, M. Feit, and S. Demos, “Localized dynamics during laser-induced damage in optical materials”, Phys. Rev. Lett. 92, 87401 (2004). [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.