Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 6, 2011
|
|
---|---|---|
Article Number | 11036 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.2971/jeos.2011.11036 | |
Published online | 23 June 2011 |
- M. Mansuripur, “Distribution of light at and near the focus of high-numerical-aperture objectives”, J. Opt. Soc. Am. A 3, 2086–2093 (1995). [Google Scholar]
- D. G. Flagello, T. Milster, and A. E. Rosenbluth, “Theory of high-NA imaging in homogeneous thin films”, J. Opt. Soc. Am. A 13, 53–64 (1996). [NASA ADS] [CrossRef] [Google Scholar]
- H. Ling, and S. W. Lee, “Focusing of electromagnetic waves through a dielectric interface”, J. Opt. Soc. Am. A 1, 965–973 (1984). [NASA ADS] [CrossRef] [Google Scholar]
- H. Ling, S. W. Lee, and W. Gee, “Frequency optimization of focused microwave hyperthermia applications”, Proc. IEEE 72, 224–225 (1984). [CrossRef] [Google Scholar]
- P. Török, P. Varga, Z. Laczic, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation”, J. Opt. Soc. Am. A 12, 325–332 (1995). [CrossRef] [Google Scholar]
- P. Török, P. Varga, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices. I. Structure of the electromagnetic field”, J. Opt. Soc. Am. A 12, 2136–2144 (1995). [CrossRef] [Google Scholar]
- P. Török, P. Varga, and G. Nemeth, “Analytical solution of the diffraction integrals and interpretation of wave-front distortion when light is focused through a planar interface between materials of mismatched refractive indices”, J. Opt. Soc. Am. A 12, 2660–2671 (1995). [CrossRef] [Google Scholar]
- P. Török, “Focusing of electromagnetic waves through a dielectric interface by leses of finite fresnel number”, J. Opt. Soc. Am. A 3, 2086–2093 (1998). [Google Scholar]
- J. H. Erkkila, and M. E. Rogers, “Diffracted fields in the focal volume of a converging wave”, J. Opt. Soc. Am. 71, 904–905 (1981). [NASA ADS] [CrossRef] [Google Scholar]
- J. J. Stamnes, and B. Spjelkavik, “Focusing at small angular apertures in the Debye and Kirchhoff approximations”, Opt. Commun. 40, 81–85 (1981). [NASA ADS] [CrossRef] [Google Scholar]
- E. Wolf, and Y. Li, “Conditions for the validity of the Debye integral representation of focused fields”, Opt. Commun. 39, 205–210 (1981). [NASA ADS] [CrossRef] [Google Scholar]
- Y. Li, “Encircled energy for systems of different Fresnel numbers”, Optik 64, 207–218 (1983). [Google Scholar]
- Y. Li, and H. Platzer, “An experimental investigation of diffraction patterns in low-Fresnel-number focusing systems”, Opt. Acta 30, 1621–1643 (1983). [NASA ADS] [CrossRef] [Google Scholar]
- Y. Li, “Dependence of the focal shift on Fresnel number and f −number”, J. Opt. Soc. Am. A 72, 770–4 (1982). [NASA ADS] [CrossRef] [Google Scholar]
- V. Dhayalan, and J. J. Stamnes, “Focusing of electric-dipole waves in the Debye and Kirchhoff approximations”, Pure Appl. Opt. 6, 347–372 (1997). [NASA ADS] [CrossRef] [Google Scholar]
- G. W. Farnell, “Measured phase distribution in the image space of a microwave lens”, Can. J. Phys. 36, 935–943 (1958). [NASA ADS] [CrossRef] [Google Scholar]
- C. A. Taylor, and B. J. Thompson, “Attempt to investigate experimentally the intensity distribution near the focus in the error-free diffraction patterns of circular and annular apertures”, J. Opt. Soc. Am. 48, 844–50 (1958). [NASA ADS] [CrossRef] [Google Scholar]
- J. J. Stamnes, and V. Dhayalan, “Focusing of electric-dipole waves”, Pure Appl. Opt. 5, 195–226 (1996). [NASA ADS] [CrossRef] [Google Scholar]
- Q. W. Zhan, “Trapping metallic Rayleigh particles with radial polarization”, Opt. Express 12, 3377–3382 (2004). [NASA ADS] [CrossRef] [Google Scholar]
- L. E. Helseth, “Focusing of atoms with strongly confined light potentials”, Opt. Commun. 212, 343–352 (2002). [CrossRef] [Google Scholar]
- M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polrized laser radiation”, Appl. Phys. A-Matter 86, 21965–21972, (2010). [Google Scholar]
- R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam”, Phys. Rev. Lett. 91, 233901–233904 (2003). [NASA ADS] [CrossRef] [Google Scholar]
- S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to tighter spot”, Opt. Commun. 179, 1–7 (2000). [NASA ADS] [CrossRef] [Google Scholar]
- S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light - theoretical calculation and experimental tomographic reconstruction”, Appl. Phys. B-Lasers 072, 109–113 (2001). [NASA ADS] [CrossRef] [Google Scholar]
- H. P. Urbach, and S. F. Pereira, “The field in focus with maximum electric field components”, Phys. Rev. A 79, 013825 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- V. Dhayalan, and J. J. Stamnes, “Focusing of electromagnetic waves into a dielectric slab I. Exact and asymptotic results”, Pure Appl. Opt. 7, 33–52 (1998). [NASA ADS] [CrossRef] [Google Scholar]
- J. J. Stamnes, and H. A. Eide, “Exact and approximate solutions for focusing of two-dimensional waves. I. Theory”, J. Opt. Soc. Am. A 15, 1285–1291 (1998). [NASA ADS] [CrossRef] [Google Scholar]
- H. A. Eide, and J. J. Stamnes, “Exact and approximate solutions for focusing of two-dimensional waves. II. Numerical comparisons between exact, Debye, and Kirchhoff theories”, J. Opt. Soc. Am. A 15, 1308–1319 (1998). [NASA ADS] [CrossRef] [Google Scholar]
- H. A. Eide, and J. J. Stamnes, “Exact and approximate solutions for focusing of two-dimensional waves. III. Numerical comparisons between exact and Rayleigh-Sommerfeld theories”, J. Opt. Soc. Am. A 15, 1292–1307 (1998). [NASA ADS] [CrossRef] [Google Scholar]
- D. Jiang and J. J. Stamnes, “Theoretical and experimental results for two-dimensional electromagnetic waves focused through an interface”, Pure Appl. Opt. 7, 627–641 (1998). [NASA ADS] [CrossRef] [Google Scholar]
- J. J. Stamnes, and D. Jiang, “Focusing of two-dimensional electromagnetic waves through a plane interface”, Pure Appl. Opt, 7, 603–625 (1998). [NASA ADS] [CrossRef] [Google Scholar]
- J. J. Stamnes, Waves in Focal Regions, (Adam Hilger, Bristol and Boston, 1986). [Google Scholar]
- W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes, (Cambridge Univ. Press, 1989. [Google Scholar]
- J. J. Stamnes, B. Spjelkavik, and H. M. Pedersen, “Evaluation of diffraction integrals using local phase and amplitude approximations”, Opt. Acta 30, 207–222 (1983). [NASA ADS] [CrossRef] [Google Scholar]
- V. Dhayalan, and J. J. Stamnes, “Comparison of exact asymptotic results for the focusing of electromagnetic waves through a plane interface”, Appl. Opt. 39, 6332–6340 (2000). [CrossRef] [Google Scholar]
- M. Abramowitz, and I. A. Stegun, Handbook of Mathematical Functions, (Dover, New York, 5th edition (1968)). [Google Scholar]
- Y. Li, and E. Wolf, “Three-dimensional intensity distribution near the focus in systems of different Fresnel numbers”, J. Opt. Soc. Am. A 1, 801–808 (1984). [NASA ADS] [CrossRef] [Google Scholar]
- Y. Li, “Focal shifts in small-fresnel-number focusing systems of different relative aperture”, J. Opt. Soc. Am. A 20, 234–239 (2003). [NASA ADS] [CrossRef] [Google Scholar]
- Y. Li, “Focal shifts in diffracted converging electromagnetic waves. I. Kirchhoff theory”, J. Opt. Soc. Am. A 22, 68–76 (2005). [CrossRef] [Google Scholar]
- Y. Li, “Focal shifts in diffracted converging electromagnetic waves. II. Rayleigh theory”, J. Opt. Soc. Am. A 22, 77–83 (2005). [NASA ADS] [CrossRef] [Google Scholar]
- J. J. Stamnes, and V. Dhayalan, “Focal shifts on focusing through a plane interface”, Opt. Commun. 282, 2286–2291 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- M. Mansuripur, “Certain computational aspects of vector diffraction problems”, J. Opt. Soc. Am. A 6, 786–805 (1989). [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.