Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 6, 2011
Article Number 11029
Number of page(s) 6
DOI https://doi.org/10.2971/jeos.2011.11029
Published online 31 May 2011
  1. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three dimensional optical data storage and microfabrication”, Nature 398, (6722), 51–54 (1999). [NASA ADS] [CrossRef] [Google Scholar]
  2. S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices - Micromachines can be created with higher resolution using two-photon absorption”, Nature 412, (6848) 697–698 (2001). [NASA ADS] [CrossRef] [Google Scholar]
  3. P. Galajda and P. Ormos, “Complex micromachines produced and driven by light”, Appl. Phys. Lett. 78, 249–151 (2001). [NASA ADS] [CrossRef] [Google Scholar]
  4. R. Guo, S. Z. Xiao, X. M. Zhai, J. W. Li, A. D. Xia, and W. H. Huang, “Micro lens fabrication by means of femtosecond two photon photopolymerization”, Opt. Express 14, 810–816 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  5. S. Maruo, and H. Inoue, “Optically driven micropump produced by three-dimensional two-photon microfabrication”, Appl. Phys. Lett. 89, 144101 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  6. L. Kelemen, S. Valkai, and P. Ormos, “Integrated optical motor”, Appl. Optics 45, 2777–2780 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  7. G. Knöner, S. Parkin, and T. A. Nieminen, V. L. Y. Loke, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Integrated optomechanical microelements”, Opt. Express 15, 5521–5530 (2007). [CrossRef] [Google Scholar]
  8. S. Maruo, A. Takaura, and Y. Saito, “Optically driven micropump with a twin spiral microrotor”, Opt. Express 17, 18525–18532 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  9. K.-S. Lee, R. H. Kim, D.-Y. Yang, S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization”, Prog. Polym. Sci. 33, 631–681, (2008). [CrossRef] [Google Scholar]
  10. S-H. Park, D-Y. Yang, and K-S. Lee, “Two-photon stereolithography for realizing ultraprecise three-dimensional nano/microdevices”, Laser Photonics Rev. 3, 1–11 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  11. S. D. Gittard and R. J. Narayan, “Laser direct writing of micro- and nano-scale medical devices”, Expert Rev. Med. Devic. 7, 343–356 (2010). [CrossRef] [Google Scholar]
  12. H.-B. Sun, T. Tanaka, and S. Kawata, “Three-dimensional focal spots related to two-photon excitation”, Appl. Phys. Lett. 80, 3673–3675 (2002). [NASA ADS] [CrossRef] [Google Scholar]
  13. T. Tanaka, H. Sun, and S. Kawata, “Rapid Sub-Diffraction-Limit Laser micro/ nanoprocessing in a Threshold Material System”, Appl. Phys. Lett. 80, 312–314 (2002). [NASA ADS] [CrossRef] [Google Scholar]
  14. W. Haske, V. W. Chen, J. M. Hales, W. T. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography”, Opt. Express 15, 3426–3436 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  15. F. Formanek, N. Takeyasu, T. Tanaka, K. Chiyoda, A. Ishikawa, and S. Kawata, “Three-dimensional fabrication of metallic nanostructures over large areas by two-photon polymerization”, Opt. Express 14, 800–809 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  16. L. Kelemen, S. Valkai, and P. Ormos, “Parallel photopolymerisation with complex light patterns generated by diffractive optical elements”, Opt. Express 15, 14488–14497 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  17. H. Takahashi, S. Hasegawa, A. Takita, and Y. Hayasaki, “Sparse-exposure technique in holographic two-photon polymerization”, Opt. Express 16, 16592–16599 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  18. R. J. Winfield, B. Bhuian, S. O’Brien, G.M. Crean, “Fabrication of grating structures by simultaneous multi-spot fs laser writing”, Appl. Surf. Sci. 253, 8086–8090, (2007). [NASA ADS] [CrossRef] [Google Scholar]
  19. D. G. Grier, “A revolution in optical manipulation”, Nature 424, (6950), 810–816 (2003). [Google Scholar]
  20. J. Leach, G. Sinclair, P. Jordan, J. Courtial, M. Padgett, J. Cooper, and Zs. Laczik, “3D manipulation of particles into crystal structures using holographic optical tweezers”, Opt. Express 12, 220–226 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  21. A. Jesacher, C. Maurer, A. Schwaighofer, S. Bernet, and M. Ritsch-Marte, “Full phase and amplitude control of holographic optical tweezers with high efficiency”, Opt. Express 16, 4479–4486 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  22. G. Bautista, M. J. Romero, G. Tapang, and V. R. Daria, “Parallel two-photon photopolymerization of microgear patterns”, Opt. Commun. 282, 3746–3750 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  23. K. Seunarine, D. W. Calton, I. Underwood, J. T. M. Stevenson, A. M. Gundlach, and M. Begbie, “Techniques to improve the flatness of reflective micro-optical arrays”, Sensor Actuator 78, 18–27 (1999). [CrossRef] [Google Scholar]
  24. T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumoto, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation”, Proc. SPIE 6487, 64870Y (2007). [NASA ADS] [CrossRef] [Google Scholar]
  25. A. Jesacher, A. Schwaighofer, S. Fürhapter, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Wavefront correction of spatial light modulators using an optical vortex image”, Opt. Express 15, 5801–5808 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  26. E. Martín-Badosa, M. Montes-Usategui, A. Carnicer, J. Andilla, E. Pleguezuelos, and I. Juvells, “Design strategies for optimizing holographic optical tweezers set-ups”, J. Opt. A - Pure Appl. Op. 9, S267–S277, (2007). [CrossRef] [Google Scholar]
  27. Y. Roichman, A. Waldron, E. Gardel, and D. G. Grier, “Optical traps with geometric aberrations”, Appl. Opt. 45, 3425–3429 (2006). [CrossRef] [Google Scholar]
  28. K. D. Wulff, D. G. Cole, R. L. Clark, R. DiLeonardo, J. Leach, J. Cooper, G. Gibson, and M. J. Padgett, “Aberration correction in holographic optical tweezers”, Opt. Express 14, 4169–4174 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  29. C. Li, M. Xia, Q. Mu, B. Jiang„ L.i Xuan, and Z. Cao, “High-precision open-loop adaptive optics system based on LC-SLM”, Opt. Express 17, 10774–10781 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  30. C. López-Quesada, J. Andilla, and E. Martín-Badosa, “Correction of aberration in holographic optical tweezers using a Shack-Hartmann sensor”, Appl. Opt. 48, 1084–1090 (2009). [CrossRef] [Google Scholar]
  31. J. Garcia-Marquez, J.E.A. Landgrave, N. Alcala-Ochoa, C. Perez-Santos, “Recursive wavefront aberration correction method for LCoS spatial light modulators”, Opt. Laser Eng. 49, 743–748 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  32. R. W. Bowman, A. J. Wright and M. J. Padgett, “An SLM-based Shack-Hartmann wavefront sensor for aberration correction in optical tweezers”, J. Opt. 12, 124004 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  33. T. Cizmar, M. Mazilu, K. Dholakia, “In situ wavefront correction and its application to micromanipulation”, Nat. Photonics 4, 388–394 (2010). [Google Scholar]
  34. L. Hu, L. Xuan, Y. Liu, Z. Cao, D. Li, and Q. Mu, “Phase-only liquid crystal spatial light modulator for wavefront correction with high precision”, Opt. Express 12, 6403–6409 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  35. http://holoeye.com/download_daten/PhaseCam_Manual.pdf [Google Scholar]
  36. H. B. Sun, K. Takada, M. S. Kim, K.-S. Lee, and S. Kawata, “Scaling laws of voxels in two-photon photopolymerization nanofabrication”, Appl. Phys. Lett. 83, 1104–1106 (2003). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.