Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 6, 2011
Article Number 11030
Number of page(s) 11
DOI https://doi.org/10.2971/jeos.2011.11030
Published online 02 June 2011
  1. M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths”, Appl. Phys. Lett. 82, 2954–2956 (2003). [CrossRef] [Google Scholar]
  2. R. Dekker, N. Usechak, M. Forst, and A. Driessen, “Ultrafast non-linear all-optical processes in silicon-on-insulator waveguides”, J. Phys. D Appl. Phys. 40, R249–R271 (2007). [CrossRef] [Google Scholar]
  3. D. Miller, “Optical interconnects to silicon”, IEEE J. Sel. Top. Quant. 6, 1312–1317 (2000). [NASA ADS] [CrossRef] [Google Scholar]
  4. T. Barwicz, H. Byun, F. Gan, C. W. Holzwarth, M. A. Popovic, P. T. Rakich, M. R. Watts, E. P. Ippen, F. X. Kärtner, H. I. Smith, J. S. Orcutt, R. J. Ram, V. Stojanovic, O. O. Olubuyide, J. L. Hoyt, S. Spector, M. Geis, M. Grein, T. Lyszczarz, and J. U. Yoon, “Silicon photonics for compact, energy-efficient interconnects”, J. Opt. Netw. 6, 63–73 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  5. F. Kroeger, A. Ryasnyanskiy, A. Baron, N. Dubreuil, P. Delaye, R. Frey, G. Roosen, and D. Peyrade, “Saturation of the Raman amplification by self-phase modulation in silicon nanowaveguides”, Appl. Phys. Lett. 96, 241102 (2010). [CrossRef] [Google Scholar]
  6. R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, “Influence of nonlinear absorption on raman amplification in silicon waveguides”, Opt. Express 12, 2774–2780 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  7. T. K. Liang and H. K. Tsang, “Efficient raman amplification in silicon-on-insulator waveguides”, Appl. Phys. Lett. 85, 3343–3345 (2004). [CrossRef] [Google Scholar]
  8. R. Espinola, J. Dadap, J. Richard Osgood, S. McNab, and Y. Vlasov, “Raman amplification in ultrasmall silicon-on-insulator wire waveguides”, Opt. Express 12, 3713–3718 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  9. T. Liang, L. Nunes, M. Tsuchiya, K. Abedin, T. Miyazaki, D. V. Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. Tsang, “High speed logic gate using two-photon absorption in silicon waveguides”, Opt. Commun. 265, 171–174 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  10. D. Moss, L. Fu, I. Littler, and B. Eggleton, “Ultrafast all-optical modulation via two-photon absorption in silicon-on-insulator waveguides”, Electron. Lett. 41, 320–321 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  11. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications”, Opt. Express 15, 16604–16644 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  12. H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 µm wavelength”, Appl. Phys. Lett. 80, 416–418 (2002). [NASA ADS] [CrossRef] [Google Scholar]
  13. O. Boyraz, T. Indukuri, and B. Jalali, “Self-phase-modulation induced spectral broadening in silicon waveguides”, Opt. Express 12, 829–834 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  14. E. Dulkeith, Y. A. Vlasov, X. Chen, N. C. Panoiu, and J. Richard M. Osgood, “Self-phase-modulation in submicron silicon-on-insulator photonic wires”, Opt. Express 14, 5524–5534 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  15. T.-K. Liang and H.-K. Tsang, “Nonlinear absorption and raman scattering in silicon-on-insulator optical waveguides”, IEEE J. Sel. Top. Quant. 10, 1149–1153 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  16. D. Moss, L. Fu, I. Littler, and B. Eggleton, “Ultrafast all-optical modulation via two-photon absorption in silicon-on-insulator waveguides”, Electron. Lett. 41, 320–321 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  17. R. Claps, D. Dimitropoulos, Y. Han, and B. Jalali, “Observation of raman emission in silicon waveguides at 1.54 µm”, Opt. Express 10, 1305–1313 (2002). [NASA ADS] [CrossRef] [Google Scholar]
  18. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip”, Nature 441, 960–963 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  19. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. ichi Takahashi, and S. ichi Itabashi, “Four-wave mixing in silicon wire waveguides”, Opt. Express 13, 4629–4637 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  20. H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide”, Appl. Phys. Lett. 85, 2196–2198 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  21. Q. Xu, V. R. Almeida, and M. Lipson, “Demonstration of high raman gain in a submicrometer-size silicon-on-insulator waveguide”, Opt. Lett. 30, 35–37 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  22. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave raman silicon laser”, Nature 433, 725–728 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  23. O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser”, Opt. Express 12, 5269–5273 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  24. Q. Xu, V. Almeida, and M. Lipson, “Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides”, Opt. Express 12, 4437–4442 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  25. A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, “Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering”, Opt. Express 12, 4261–4268 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  26. D. R. Solli, P. Koonath, and B. Jalali, “Broadband Raman amplification in silicon”, Appl. Phys. Lett. 93, 191105 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  27. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2007), 4th ed. [Google Scholar]
  28. L. Razzari, D. Trager, M. Astic, P. Delaye, R. Frey, G. Roosen, and R. Andre, “Kerr and four-wave mixing spectroscopy at the band edge of one-dimensional photonic crystals”, Appl. Phys. Lett. 86, 231106 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  29. P. Delaye, M. Astic, R. Frey, and G. Roosen, “Transfer-matrix modeling of four-wave mixing at the band edge of a one-dimensional photonic crystal”, J. Opt. Soc. Am. B 22, 2494–2504 (2005). [CrossRef] [Google Scholar]
  30. A. Baron, A. Ryasnyanskiy, N. Dubreuil, P. Delaye, Q. V. Tran, S. Combrié, A. de Rossi, R. Frey, and G. Roosen, “Light localization induced enhancement of third order nonlinearities in a GaAs photonic crystal waveguide”, Opt. Express 17, 552–557 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  31. C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. Pelusi, D. Moss, B. Eggleton, T. White, L. O’Faolain, and T. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides”, IEEE J. Sel. Top. Quant. 16, 344–356 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  32. A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young, and E. W. V. Stryland, “Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe”, J. Opt. Soc. Am. B 9, 405–414 (1992). [NASA ADS] [CrossRef] [Google Scholar]
  33. L. Yin and G. P. Agrawal, “Impact of two-photon absorption on self-phase modulation in silicon waveguides”, Opt. Lett. 32, 2031–2033 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  34. S. Roy, S. K. Bhadra, and G. P. Agrawal, “Raman amplification of optical pulses in silicon waveguides: effects of finite gain bandwidth, pulse width, and chirp”, J. Opt. Soc. Am. B 26, 17–25 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  35. S. C. Pinault and M. J. Potasek, “Frequency broadening by self-phase modulation in optical fibers”, J. Opt. Soc. Am. B 2, 1318–1319 (1985). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.