Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 6, 2011
|
|
---|---|---|
Article Number | 11028 | |
Number of page(s) | 14 | |
DOI | https://doi.org/10.2971/jeos.2011.11028 | |
Published online | 23 May 2011 |
- M. Born, and E. Wolf, Principles of Optics Ch. 9 (Cambridge University Press, Cambridge, United Kingdom, 1999). [CrossRef] [Google Scholar]
- W. J. Tango, “The circle polynomials of Zernike and their application in optics” Appl. Phys. 13, 327–332 (1977). [CrossRef] [Google Scholar]
- C. -J. Kim and R. R. Shannon, “Catalog of Zernike polynomials” in Applied Optics and Optical Engineering, R. R. Shannon, and J. C. Wyant, eds. 10, 193–221 (Academic Press, New York, 1987). [Google Scholar]
- J. J. M. Braat, S. van Haver, A. J. E. M. Janssen, and P. Dirksen, “Assessment of optical systems by means of point-spread functions”, Progress in Optics E. Wolf, ed. 51, 349–468 (Elsevier, Amsterdam, The Netherlands, 2008). [NASA ADS] [CrossRef] [Google Scholar]
- R. J. Noll, “Zernike polynomials and atmospheric turbulence” J. Opt. Soc. Am. 66, 207–211 (1976). [NASA ADS] [CrossRef] [Google Scholar]
- V. N. Mahajan, “Zernike annular polynomials and optical aberrations of systems with annular pupils” Appl. Opt. 33, 8125–8127 (1994). [NASA ADS] [CrossRef] [Google Scholar]
- S. Bará, J. Arines, J. Ares, and P. Prado, “Direct transformation of Zernike eye aberration coefficients between scaled, rotated, and/or displaced pupils” J. Opt. Soc. Am. A23, 2061–2066 (2006). [CrossRef] [Google Scholar]
- G. -M. Dai, “Scaling Zernike expansion coefficients to smaller pupil sizes: a simpler formula” J. Opt. Soc. Am. A23, 539–543 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- R. M. Aarts, and A. J. E. M. Janssen, “On-axis and far-field sound radiation from resilient flat and dome-shaped radiators” J. Acoust. Soc. Am. 125, 1444–1455 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- R. M. Aarts, and A. J. E. M. Janssen, “Sound radiation quantities arising from a resilient circular radiator” J. Acoust. Soc. Am. 126, 1776–1787 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- R. M. Aarts, and A. J. E. M. Janssen, “Sound radiation from a resilient cap on a rigid sphere” J. Acoust. Soc. Am. 127, 2262–2273 (2010). [NASA ADS] [CrossRef] [Google Scholar]
- F. Zernike, “Diffraction theory of the knife-edge test and its improved version, the phase-contrast method” Physica 1, 689–704 (1934). [NASA ADS] [CrossRef] [Google Scholar]
- B. R. A. Nijboer, The Diffraction Theory of Aberrations, (Ph.D. thesis, University of Groningen, The Netherlands, 1942). [Google Scholar]
- S. van Haver, J. J. M. Braat, P. Dirksen, and A. J. E. M. Janssen, “High-NA aberration retrieval with the Extended Nijboer-Zernike vector diffraction theory” J. Europ. Opt. Soc. Rap. Public. 1, 06004 (2006). [CrossRef] [Google Scholar]
- J. J. M. Braat, P. Dirksen, A. J. E. M. Janssen, and S. van Haver, “Strehl intensity and optimum focus of high-numerical-aperture beams” J. Europ. Opt. Soc. Rap. Public. 2, 07008 (2007). [CrossRef] [Google Scholar]
- J. J. M. Braat, S. van Haver, A. J. E. M. Janssen, and P. Dirksen, “Energy and momentum flux in a high-numerical-aperture beam using the extended Nijboer-Zernike diffraction formalism” J. Europ. Opt. Soc. Rap. Public. 2, 07032 (2007). [CrossRef] [Google Scholar]
- J. J. M. Braat, S. van Haver, A. J. E. M. Janssen, and S. F. Pereira, “Image formation in a multilayer using the Extended Nijboer-Zernike theory” J. Europ. Opt. Soc. Rap. Public. 4, 09048 (2009). [CrossRef] [Google Scholar]
- M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, (Dover Publications, New York, 1972). [Google Scholar]
- A. J. E. M. Janssen, S. van Haver, P. Dirksen, and J. J. M. Braat, “Zernike representation and Strehl ratio of optical systems with variable numerical aperture” J. Mod. Optic. 55, 1127–1157 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- S. A. Comastri, L. I. Perez, G. D. Pérez, G. Martin, and K. Bastida, “Zernike expansion coefficients: rescaling and decentring for different pupils and evaluation of corneal aberrations” J. Opt. A: Pure Appl. Op. 9, 209–221 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- A. J. E. M. Janssen, and P. Dirksen, “Computing Zernike polynomials of arbitrary degree using the discrete Fourier transform” J. Europ. Opt. Soc. Rap. Public. 2, 07012 (2007). [CrossRef] [Google Scholar]
- A. J. E. M. Janssen, and P. Dirksen, “Concise formula for the Zernike coefficients of scaled pupils” J. Microlith. Microfab. 5, 030501 (2006). [Google Scholar]
- C. J. R. Sheppard, S. Campbell, and M. D. Hirschhorn, “Zernike expansion of separable functions of Cartesian coordinates” Appl. Optics 43, 3963–3966 (2004). [NASA ADS] [CrossRef] [Google Scholar]
- A. M. Cormack, “Representation of a function by its line integrals, with some radiological applications, II” J. Appl. Phys. 35, 2908–2913 (1964). [NASA ADS] [CrossRef] [Google Scholar]
- E. C. Kintner, and R. M. Sillitto, “A new “analytic” method for computing the optical transfer function” Opt. Acta 23, 607–619 (1976). [CrossRef] [Google Scholar]
- E. C. Kintner, “An analytic recurrence for computing the cross-multiplication coefficients in an analytic OTF method” Opt. Acta 24, 1237–1246 (1977). [CrossRef] [Google Scholar]
- R. M. Aarts, and A. J. E. M. Janssen, Acoustic holography for piston sound radiation with non-uniform velocity profiles, (17th International Congress on Sound & Vibration, 1-6, Cairo, 18-22 July, 2010). [Google Scholar]
- A. J. E. M. Janssen, “Zernike circle polynomials and infinite integrals involving the product of Bessel functions” arXiv:1007.0667v1, 5 July, 2010; also available from Library of Eindhoven University of Technology ISBN: 978-90-386-2290-3. [Google Scholar]
- H. H. Hopkins, “The numerical evaluation of the frequency response of optical systems” P. Phys. Soc. Lond. B 70, 1002–1005 (1957). [NASA ADS] [CrossRef] [Google Scholar]
- J. Macdonald, “The calculation of the optical transfer function” Opt. Acta 18, 269–290 (1971). [NASA ADS] [CrossRef] [Google Scholar]
- O. T. A. Janssen, S. van Haver, A. J. E. M. Janssen, H. P. Urbach and S. F. Pereira, “Extended Nijboer-Zernike (ENZ) based mask imaging: Efficient coupling of electro-magnetic field solvers and the ENZ imaging algorithm” Proc. SPIE 6924, 692410 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- G. Szegö, Orthogonal Polynomials (AMS, Providence, 1939, 4th ed., 1975). [Google Scholar]
- T. Koornwinder, “Positivity proofs for linearization and connection coefficients of orthogonal polynomials satisfying an addition formula” J. Lond. Math. Soc. (2) 18, 101–114 (1978). [CrossRef] [Google Scholar]
- E. Koelink, private communication, 2002. [Google Scholar]
- W. N. Bailey, “Some infinite integrals involving Bessel functions” Proc. Lond. Math. Soc. (2) 40, 37–48 (1936). [Google Scholar]
- G. N. Watson, A Treatise on the Theory of Bessel Functions (Cambridge University Press, Cambridge, United Kingdom, 1944). [Google Scholar]
- A. Erdélyi et al., Tables of integral transforms, Vol. 2 (McGraw-Hill, New York, 1954). [Google Scholar]
- Y. L. Luke, Integrals of Bessel functions (McGraw-Hill, New York, 1962). [Google Scholar]
- A. P. Prudnikov, Yu. A. Brychkov, and O.I. Marichev, Integrals and Series, Volume 2: Special Functions (Gordon and Breach Science, New York, 1986). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.