Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 5, 2010
|
|
---|---|---|
Article Number | 10052 | |
Number of page(s) | 4 | |
DOI | https://doi.org/10.2971/jeos.2010.10052 | |
Published online | 23 September 2010 |
- J. W. Goodman, Speckle phenomena in optics, theory and applications (Roberts and Company, Colorado, 2006). [Google Scholar]
- H. Fujii, “Contrast variation of non-Gaussian speckle” Opt. Act. 27, 409–418 (1980). [CrossRef] [Google Scholar]
- M. Deka, S. P. Almeida, and H. Fujii, “Root-mean-square difference between the intensities of non-Gaussian speckle at two different wavelengths” J. Opt. Soc. Am. 71, 155–163 (1981). [NASA ADS] [CrossRef] [Google Scholar]
- I. Bergoënd, X. Orlik, and E. Lacot, “Study of a circular Gaussian transition in an optical speckle field” J. Europ. Opt. Soc. Rap. Public. 3, 08028 (2008). [CrossRef] [Google Scholar]
- H. Kadano, T. Asakura, and N. Takai, “Roughness and correlation length determination of rough-surface objects using speckle contrast” Appl. Phys. B 44, 167–173 (1987). [NASA ADS] [CrossRef] [Google Scholar]
- H. Kadano, T. Asakura, and N. Takai, “Roughness and correlation length measurements of rough-surface objects using the speckle contrast in the diffraction field” Optik 80, 115–120 (1988). [Google Scholar]
- C. Cheng, C. Liu, N. Zhang, T. Jia, R. Li, and Z. Xu, “Absolute measurement of roughness and lateral-correlation length of random surfaces by use of the simplified model of image-speckle contrast” Appl. Opt. 41, 4148 (2002). [NASA ADS] [CrossRef] [Google Scholar]
- C. Zhan, “Graph-theoretical methods for detecting and describing gestalt clusters” IEEE T. Comput. C-20, 68–86 (1971). [CrossRef] [Google Scholar]
- R. Grella, “Fresnel propagation and diffraction and paraxial wave equation” J. Opt. 13, 367–374 (1982). [NASA ADS] [CrossRef] [Google Scholar]
- A. K. Fung, and M. F. Chen, “Numerical simulation of scattering from simple and composite random surfaces” J. Opt. Soc. Am. A 2, 2274–2284 (1985). [NASA ADS] [CrossRef] [Google Scholar]
- J. Beardwood, J. Halton, and J. Hammersley, “The shortest path through many points” P. Camb. Philos. Soc. 55, 299–327 (1959). [CrossRef] [Google Scholar]
- R. Hoffman, and A. Jain, “A test of randomness based on the minimal spanning tree” Pattern Recogn. Lett. 1, 175–180 (1983). [CrossRef] [Google Scholar]
- C. Dussert, G. Rasigni, M. Rasigni, and J. Palmari, “Minimal spanning tree: A new approach for studying order and disorder” Phys. Rev. B 34, 3528–3531 (1986). [NASA ADS] [CrossRef] [Google Scholar]
- F. Wallet, and C. Dussert, “Comparison of spatial point patterns and processes characterization methods” Europhys. Lett. 42, 493–498 (1998). [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.