Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 5, 2010
Article Number 10049s
Number of page(s) 4
DOI https://doi.org/10.2971/jeos.2010.10049s
Published online 23 September 2010
  1. W. T. Tsang, “Advances in MOVPE, MBE, and CBE” J. Cryst. Growth 120, 1–24 (1992). [CrossRef] [Google Scholar]
  2. F. Capasso, H. M. Cox, A. L. Hutchinson, N. A. Olsson, and S. G. Hummel, “Pseudo-quaternary GaInAsP semiconductors: A new Ga0.47In0.53As/InP graded gap superlattice and its applications to avalanche photodiodes” Appl. Phys. Lett. 45, 1193–1195 (1984). [NASA ADS] [CrossRef] [Google Scholar]
  3. L. M. Dotor, D. Golmayo, and F. Briones, “(Ga0.22In0.78As)m/(Ga0.22In0.78P)m superlattices grown by atomic-layer molecular beam epitaxy on InP” J. Cryst. Growth 127, 619–622 (1993). [CrossRef] [Google Scholar]
  4. A. Ginty, J. D. Lambkin, L. Considine, and W. M. Kelly, “Long wave-length quantum well lasers with InGaAs/lnP superlattice optical confinement and barrier layers” Electron. Lett. 29, 684–685 (1993). [NASA ADS] [CrossRef] [Google Scholar]
  5. L. M. Dotor, P. Huertas, D. Golmayo, and F. Briones, “Ga0.47In0.53As multiquantum well heterostructures, confined by pseudoquaternary (InP)n/(Ga0.47In0.53As)m short period superlattices lattice-matched to InP” Appl. Phys. Lett. 62, 891–893 (1993). [NASA ADS] [CrossRef] [Google Scholar]
  6. F. Briones, L. Gonzalez, and A. Ruiz, “Atomic layer molecular beam epitaxy (ALMBE) of Ill-V compounds: growth modes and applications” Appl. Phys. A 49, 7290-7307 (1989). [Google Scholar]
  7. B. X. Yang, and H. Hasegawa, “Properties of InP grown by migration enhanced epitaxy using polycrystalline InP as phosphorus source” in Proceedings to the Fifth International Conference on Indium Phosphide and Related Materials, 271–274 (IEEE, Paris, 1993). [Google Scholar]
  8. L. M. Dotor, P. Huertas, A. P. Postigo, D. Golmayo, and F. Briones, “p-Type InP grown at low temperatures by atomic layer molecular beam epitaxy (ALMBE)” Electron. Lett. 29, 1270–1271 (1993). [NASA ADS] [CrossRef] [Google Scholar]
  9. L. M. Dotor, P. Huertas, P. A. Postigo, D. Golmayo, and F. Briones, “Emisión laser en 1.5 µm en una estructura de tipo pozo cuántico múltiple crecida sobre InP por epitaxia de haces moleculares (MBE)” in Proceedings of the VIII National Symposium of the International Union of Radio Science (URSI) 2, 1353–1356 (Universidad Politécnica de Valencia, Spain, 1993). [Google Scholar]
  10. C. E. Zah, R. Bhat, F. J. Favire, S. G. Menocal, N. C. Andreadakis, K. W. Cheung, D. M. D. Hwang, N. A. Koza, and T. P. Lee, “Low threshold 1.5 pm compressive-strained multiple and single quantum well lasers” IEEE J. Quantum Elect. 27, 1440–1450 (1991). [NASA ADS] [CrossRef] [Google Scholar]
  11. G. W. Wicks, M. W. Koch, J. A. Varriano, F. G. Johnson, C. R. Wie, H. M. Kim, and P. Colombo, “Use of a valved, solid phosphorus source for the growth of Ga0.5In0.5P and Al0.5In0.5P by molecular beam epitaxy” Appl. Phys. Lett. 59, 342–344 (1991). [NASA ADS] [CrossRef] [Google Scholar]
  12. F. Briones “Phosphorus effusion cell for Molecular Beam Epitaxy” U. S. Patent 5431735 (1995). [Google Scholar]
  13. S. F. Yoon, H. Q. Zheng, P. H. Zhang, K. W. Mah, and G. I. Ng, “Electrical and optical properties of InP grown by molecular beam epitaxy using a valved phosphorus cracker cell” Thin Solid Films 326, 233–237 (1998). [NASA ADS] [CrossRef] [Google Scholar]
  14. J. N. Baillargeon, A. Y. Cho, F. A. Thiel, R. J. Fischer, P. J. Pearrah, and K. Y. Cheng, “Reproducibility studies of lattice matched GaInAsP on (100) InP grown by molecular beam epitaxy using solid phosphorus” Appl. Phys. Lett. 65, 207–209 (1994). [NASA ADS] [CrossRef] [Google Scholar]
  15. P. A. Postigo, M. L. Dotor, P. Huertas, D. Golmayo, and F. Briones, “Electrical and optical properties of undoped InP grown at low temperature by atomic layer molecular beam epitaxy” J. Appl. Phys. 77, 402–404 (1995). [CrossRef] [Google Scholar]
  16. J. C. Harmand, J. P. Praseuth, E. Idiart-Alhor, R. Palla, J. L. Pelouard, and M. Quillec, “Continuous molecular beam epitaxy of arsenides and phosphides applied to device structures on InP substrates” J. Cryst. Growth 150, 1292–1296 (1995). [CrossRef] [Google Scholar]
  17. M. Pessa, M. Toivonen, M. Jalonen, P. Savolainen, and A. Salokatve, “All-solid-source molecular beam epitaxy for growth of III-V compound semiconductors” Thin Solid Films 306, 237–243 (1997). [NASA ADS] [CrossRef] [Google Scholar]
  18. F. Suarez, D. Fuster, L. Gonzalez, Y. Gonzalez, J. M. Garcia, and M. L. Dotor, “Self-assembled InAs quantum wire lasers on (001)InP at 1.6 µm” Appl. Phys. Lett. 89, 091123-1-3 (2006). [CrossRef] [Google Scholar]
  19. R. Aidam, R. Lösch, R. Driad, K. Schneider, and R. Makon, “Solid source MBE growth on InP-based DHBTs for high-speed data communication” J. Cryst. Growth 301/302, 1001–1004 (2007). [CrossRef] [Google Scholar]
  20. S. H. Chen, S. Y. Wang, R. J. Hsieh, and J. I. Chyi, “InGaAsSb/InP double heterojunction bipolar transistors grown by solid-source molecular beam epitaxy” IEEE Electr. Device L. 28, 679–681 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  21. L. J. Martínez, B. Alén, I. Prieto, D. Fuster, L. González, Y. González, M. L. Dotor, and P. A. Postigo, “Room temperature continuous wave operation in a photonic crystal microcavity laser with a single layer of InAs/InP self-assembled quantum wires” Opt. Express 17, 14993–15000 (2009). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.