Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 5, 2010
Article Number 10048s
Number of page(s) 12
DOI https://doi.org/10.2971/jeos.2010.10048s
Published online 23 September 2009
  1. M. Born, and E. Wolf, Principles of Optics (Pergamon, Oxford, 1965). [Google Scholar]
  2. J. Peřina, Coherence of Light (2nd Edition D. Reidel, Dordrecht, 1985). [Google Scholar]
  3. L. Mandel, Quantum Electronics, N. Bloembergen and P. Grivet, eds. (Dunod et Cie., Paris, 1964). [Google Scholar]
  4. E. Wolf, “Light fluctuations as a new spectroscopic tool” Jap. J. Appl. Phys. Suppl. 1, 1–14 (1965). [Google Scholar]
  5. J. Peřina, “Optical Imaging with Partially Coherent Non-thermal LightI. Propagation Laws and Generalized Transfer Functions” Opt. Acta 16, 289–308 (1969). [CrossRef] [Google Scholar]
  6. R.J. Glauber, “The Quantum Theory of Optical Coherence” Phys. Rev. 130, 2529–2539 (1963). [CrossRef] [MathSciNet] [Google Scholar]
  7. R.J. Glauber, “Coherent and Incoherent States of the Radiation Field” Phys. Rev. 131, 2766–2788 (1963). [CrossRef] [Google Scholar]
  8. E. Schrödinger, Naturwissensch. 14, 644 (1927). [Google Scholar]
  9. E.C.G. Sudarshan, “Equivalence of Semiclassical and Quantum Mechanical Descriptions of Statistical Light Beams” Phys. Rev. Lett. 10, 277–279 (1963). [NASA ADS] [CrossRef] [Google Scholar]
  10. S.M. Kay, and A. Maitland, Quantum Optics (Academic Press, London, 1970). [Google Scholar]
  11. G.S. Agarwal, and E. Wolf, “Calculus for Functions of Noncommuting Operators and General Phase-Space Methods in Quantum Mechanics. I. Mapping Theorems and Ordering of Functions of Non-commuting Operators” Phys. Rev. D 2, 2161–2186 (1970). [NASA ADS] [CrossRef] [Google Scholar]
  12. G.S. Agarwal, and E. Wolf, “Calculus for Functions of Noncommuting Operators and General Phase-Space Methods in Quantum Mechanics. II. Quantum Mechanics in Phase Space” Phys. Rev. D 2, 2187–2205 (1970). [NASA ADS] [CrossRef] [Google Scholar]
  13. G.S. Agarwal, and E. Wolf, “Calculus for Functions of Noncommuting Operators and General Phase-Space Methods in Quantum Mechanics. III. A Generalized Wick Theorem and Multitime Mapping” Phys. Rev. D 2, 2206–2225 (1970). [NASA ADS] [CrossRef] [Google Scholar]
  14. K.E. Cahill, and R.J. Glauber, “Ordered Expansions in Boson Amplitude Operators” Phys. Rev. 177, 1857–1881 (1969). [NASA ADS] [CrossRef] [Google Scholar]
  15. K.E. Cahill, and R.J. Glauber, “Density Operators and Quasiprobability Distributions” Phys. Rev. 177, 1882–1902 (1969). [NASA ADS] [CrossRef] [Google Scholar]
  16. J. Peřina, and J. Horák, “On arbitrary ordering of M-mode field operators in quantum optics” Opt. Commun. 1, 91–94 (1969). [CrossRef] [Google Scholar]
  17. A. Zardecki, “Functional formalism for ordered electromagnetic field operators” J. Phys. A 7, 2198–2210 (1974). [NASA ADS] [CrossRef] [Google Scholar]
  18. D.N. Klyshko, “Observable signs of nonclassical light” Phys. Lett. A 213, 7–15 (1996). [NASA ADS] [CrossRef] [Google Scholar]
  19. J. Peřina, Quantum Statistics of Linear and Nonlinear Optical Phenomena (2nd Edition Kluwer, Dordrecht 1991). [Google Scholar]
  20. P. Facchi, and S. Pascazio, “Quantum Zeno and inverse quantum Zeno effects” in Progress in Optics, E. Wolf ed. 42, 147–216 (Elsevier, Amsterdam, 2001). [NASA ADS] [CrossRef] [Google Scholar]
  21. A. Luis, and J. Peřina, “Zeno Effect in Parametric Down-Conversion” Phys. Rev. Lett. 76, 4340–4343 (1996). [NASA ADS] [CrossRef] [Google Scholar]
  22. K. Thun, and J. Peřina, “Zeno effect in optical parametric process with quantum pumping” Phys. Lett. A 249, 363–368 (1998). [CrossRef] [Google Scholar]
  23. K. Thun, and J. Peřina, “Quantum Zeno effect in Raman scattering” Phys. Lett. A 299, 19–30 (2002). [NASA ADS] [CrossRef] [Google Scholar]
  24. A. Luis, and L.L. Sánchez-Soto, “Anti-Zeno effect in parametric down-conversion” Phys. Rev. A 57, 781–787 (1998). [NASA ADS] [CrossRef] [Google Scholar]
  25. J. Peřina, “Photocount statistics of radiation propagating through random and nonlinear media” in Progress in Optics, E. Wolf ed. 18, 127–204 (Elsevier, Amsterdam, 1980). [CrossRef] [Google Scholar]
  26. J. Peřina, Z. Hradil, and B. Jurčo, Quantum Optics and Fundamentals of Physics (Kluwer, Dordrecht, 1994). [Google Scholar]
  27. V. Peřinová, A. Lukš, and J. Peřina, Phase in Optics (World Scientific, Singapore, 1998). [Google Scholar]
  28. J. Peřina Jr. and J. Peřina, “Quantum statistics of nonlinear optical couplers” in Progress in Optics, E. Wolf ed. 41, 361–420 (Elsevier, Amsterdam, 2000). [CrossRef] [Google Scholar]
  29. J. Fiurášek, and J. Peřina, Coherence and Statistics of Photons and Atoms J. Peřina ed., 65 (J. Wiley, New York, 2001) [Google Scholar]
  30. J. Řeháček, J. Peřina, P. Facchi, S. Pascazio, and L. Mišta, Jr., “Quantum Zeno effect in a probed down-conversion process” Phys. Rev. A 62, 013804 (2000). [CrossRef] [Google Scholar]
  31. J. Řeháček, L. Mišta, Jr., J. Fiurášek, and J. Peřina, “Continuously induced coherence without induced emission” Phys. Rev. A 65, 043815 (2002). [CrossRef] [Google Scholar]
  32. A. Lukš, and V. Peřinová, Quantum Aspects of Light Propagation (Springer, New York, 2009). [CrossRef] [Google Scholar]
  33. J. Peřina, and J. Křepelka, “Joint probability distributions of stimulated parametric down-conversion for controllable nonclassical fluctuations” Opt. Commun. 281, 4705–4711 (2008). [CrossRef] [Google Scholar]
  34. D.F. Walls, and G.J. Milburn, Quantum Optics (Springer, Berlin, 1994). [CrossRef] [Google Scholar]
  35. L. Mandel, and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, 1995). [CrossRef] [Google Scholar]
  36. L. Mišta, and J. Peřina, “Quantum statistics of parametric amplification” Czech. J. Phys. B 28, 392–404 (1978). [CrossRef] [Google Scholar]
  37. A. Mebrahtu, “Parametric oscillation with squeezed vacuum reservoirs” J. Mod. Opt. 52, 813–832 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  38. J. Peřina, and J. Křepelka, “Multimode description of spontaneous parametric down-conversion” J. Opt. B: Quantum S. O. 7, 246–252 (2005). [CrossRef] [Google Scholar]
  39. J. Peřina, J. Křepelka, J. Peřina Jr., M. Bondani, A. Allevi, and A. Andreoni, “Experimental joint signal-idler quasidistributions and photon-number statistics for mesoscopic twin beams” Phys. Rev. A 76, 043806 (2007). [CrossRef] [Google Scholar]
  40. J. Peřina, J. Křepelka, J. Peřina Jr., M. Bondani, A. Allevi, and A. Andreoni, “Correlations in photon-numbers and integrated intensities in parametric processes involving three optical fields” Eur. Phys. J. D 53, 373–382 (2009). [CrossRef] [Google Scholar]
  41. R. Simon, “Peres-Horodecki Separability Criterion for Continuous Variable Systems” Phys. Rev. Lett. 84, 2726–2729 (2000). [NASA ADS] [CrossRef] [Google Scholar]
  42. A. Allevi, M. Bondani, A. Ferraro, and M.G.A. Paris, “Classical and quantum aspects of multimode parametric interactions” Laser Phys. 16, 1451–1477 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  43. I.P. Degiovanni, M. Bondani, E. Puddu, A. Andreoni, and M.G.A. Paris, “Intensity correlations, entanglement properties, and ghost imaging in multimode thermal-seeded parametric down-conversion: Theory” Phys. Rev. A 76, 062309 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  44. J. Peřina, and J. Křepelka, “Joint distributions of multimode stimulated parametric down-conversion and controllable nonclassical effects” J. Phys. B: At. Mol. Opt. 41, 085501 (2008). [CrossRef] [Google Scholar]
  45. J. Peřina, and J. Křepelka, “Joint probability distributions for optical parametric down-conversion” J. Eur. Opt. Soc.: Rap. Publ. 1, 06002 (2006). [CrossRef] [Google Scholar]
  46. J. Peřina, and J. Křepelka, “Entanglement in optical parametric down-conversion with losses and noise” Opt. Commun. 282, 3918–3923 (2009). [CrossRef] [Google Scholar]
  47. R.J. Klauder, and E.C.G. Sudarshan, Fundamentals of Quantum Optics (W.A. Benjamin, New York, 1968). [Google Scholar]
  48. B. Crosignani, P. Di Porto, and M. Bertolotti, Statistical Properties of Scattered Light (Academic Press, New York, 1975). [Google Scholar]
  49. A.S. Chirkin, and M. Y. Saigin, “Four-mode entangled states in coupled nonlinear optical processes and teleportation of two-mode entangled CV state” Phys. Scripta T135 014029 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  50. O.V. Belyaeva, and A.S. Chirkin, “Statistical properties of four-mode quantum states in coupled optical parametric down-conversions” J. Russ. Laser Res. 30, 499–507 (2009). [CrossRef] [Google Scholar]
  51. J. Peřina Jr., M. Centini, C. Sibilia, and M. Bertolotti, “Photon-pair generation in random nonlinear layered structures” Phys. Rev. A 80, 033844 (2009). [CrossRef] [Google Scholar]
  52. J. Peřina Jr., M. Centini, C. Sibilia, and M. Bertolotti, “Random non-linear layered structures as sources of photon pairs for quantum-information processing” J. Russ. Laser Res. 30, 508–513 (2009). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.