Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 4, 2009
|
|
---|---|---|
Article Number | 09003 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.2971/jeos.2009.09003 | |
Published online | 16 January 2009 |
- V. Veselago, “The electrodynamics of substances with simultaneously negative values of ɛ and µ” Sov. Phys. Uspekhi. 10, 509–514 (1968). [NASA ADS] [CrossRef] [Google Scholar]
- D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity” Phys. Rev. Lett. 84, 4184–4187 (2000). [CrossRef] [Google Scholar]
- J. B. Pendry, “Negative refraction makes a perfect lens” Phys. Rev. Lett. 85, 3966–3969 (2000). [CrossRef] [Google Scholar]
- A. Degiron, D. R. Smith, J. Mock, B. Justice, and J. Gollub, “Negative index and indefinite media waveguide couplers” Appl. Phys. 87, 321–328 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- D. Schurig, J. Mock, B. Justice, S. Cummer, J. B. Pendry, A. vS-tarr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies” Science 314, 977–980 (2006). [Google Scholar]
- J. B. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena” IEEE T. Microw. Theory. 47, 2075–2084 (1999). [CrossRef] [Google Scholar]
- W. Rotman, “Plasma simulation by artificial dielectrics and parallel-plate media” IRE Trans. Antennas Propag. AP-10, 82–95 (1962). [CrossRef] [Google Scholar]
- S. Zhang, W. Fan, K. Malloy, S. Brueck, N. Panoiu, and R. Osgood, “Near-infrared double negative materials” Opt. Express 13, 4922–4930 (2005). [NASA ADS] [CrossRef] [Google Scholar]
- V. Shalaev, W. Cai, U. Chettiar, H. Yuan, A. Sarychev, V. Drachev, and A. Kildishev, “Negative index of refraction in optical metamaterials” Opt. Lett. 30, 3356–3358 (2005). [NASA ADS] [CrossRef] [Google Scholar]
- V. Lomakin, Y. Fainman, Y. Urzhumov, and G. Shvets, “Doubly negative metamaterials in the near infrared and visible regimes based on thin film nanocomposites” Opt. Express 14, 11164–11177 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths” Science 315, 47–49 (2007). [CrossRef] [Google Scholar]
- H. Lezec, J. Dionne, and H. Atwater, “Negative refraction at visible frequencies” Science 316, 430–432 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- C. Garcia-Meca, R. Ortuño, R. Salvador, A. Martinez, and J. Marti, “Low-loss single-layer metamaterial with negative index of refraction at visible wavelengths” Opt. Express 15, 9320–9325 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index” Nature 455, 376–379 (2008). [CrossRef] [Google Scholar]
- M. Rill, C. Plet, M. Thiel, I. Staude, G. Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition” Nat. Mater. 7, 543–546 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- A. Boltasseva and V. Shalaev, “Fabrication of optical negative-index metamaterials: recent advances and outlook” Metamaterials 2, 1–17 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- A. Iyer and G. Eleftheriades, “A three-dimensional isotropic transmission-line metamaterial topology for free-space excitation” Appl. Phys. Lett. 92, 261106 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- C. Caloz and T. Itoh, Electromagnetic Metamaterials: transmission line theory and microwave applications (Hoboken: Wiley Interscience, 2006) [Google Scholar]
- N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. Padilla, “Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging” arXiv:0807.3390v2 [cond-mat.mtrl-sci], (2008). [Google Scholar]
- K. Alici and E. Ozbay, “A planar metamaterial: Polarization independent fishnet structure” Photonics Nanostruct. 6, 102–107 (2008). [Google Scholar]
- M. Born and E. Wolf, Principles of Optics (Cambridge: Cambridge University Press, 1999) [CrossRef] [Google Scholar]
- T. Koschny, L. Zhang, and C. M. Soukoulis, “Isotropic three-dimensional left-handed metamaterials” Phys. Rev. B. 71, 121103 (2005). [NASA ADS] [CrossRef] [Google Scholar]
- M. Klein, C. Enkrich, M. Wegener, C.M. Soukoulis, and S. Linden, “Single-slit split-ring resonators at optical frequencies: limits of size scaling” Opt. Lett. 31, 1259–1261 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency range” Condens Matter Phys. 17, 3717–3734 (2005). [NASA ADS] [CrossRef] [Google Scholar]
- I. Vendik, O. Vendik, and M. Odit, “Isotropic artificial media with simultaneously negative permittivity and permeability” Microw. Opt. Techn. Let. 48, 2553–2556 (2006). [CrossRef] [Google Scholar]
- A. Kussow, A. Akyurtlu, and N. Angkawisittpan, “Optically isotropic negative index of refraction metamaterial” Phys. Status. Solidi. B. 245, 992–997 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- R. Penciu, K. Aydin, M. Kafesaki, T. Koschny, E. Ozbay, E. Economou, and C. M. Soukoulis, “Multi-gap individual and coupled split-ring resonator structures” Opt. Express 16, 18131–18144 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- J. Gordon and R. Ziolkowski, “The design and simulated performance of a coated nano-particle laser” Opt. Express 15, 2622–2653 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- CST Microvawe Studio, http://www.cst.com/ [Google Scholar]
- D. Smith, S. Schultz, P. Markos, and C. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients” Phys. Rev. B. 65, 195104 (2002). [NASA ADS] [CrossRef] [Google Scholar]
- C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence” Phys. Rev. B. 77, 195328 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- E. Economou, T. Koschny, and C. Soukoulis, “Strong diamagnetic response in split-ring-resonator metamaterials: Numerical study and two-loop model” Phys. Rev. B. 78, 92401 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- T. Koschny, P. Markos, D.R. Smith, and C.M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials” Phys. Rev. E. 68, 65602 (2003). [NASA ADS] [CrossRef] [Google Scholar]
- R. Depine and A. Lakhtakia, “Comment I on: Resonant and antiresonant frequency dependence of the effective parameters of metamaterials” Phys. Rev. E. 70, 048601 (2004). [NASA ADS] [CrossRef] [Google Scholar]
- A. Efros, “Comment II on: Resonant and antiresonant frequency dependence of the effective parameters of metamaterials” Phys. Rev. E. 70, 048602 (2004). [NASA ADS] [CrossRef] [Google Scholar]
- J. Baena, L. Jelinek, and R. Marqués, “Towards a systematic design of isotropic bulk magnetic metamaterials using the cubic point groups of symmetry” Phys. Rev. B. 76, 245115 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- A. Maradudin and A. McGurn, “Photonic band structure of a truncated, two-dimensional, periodic dielectric medium” J. Opt. Soc. Am. B. 10, 307–313 (1993). [NASA ADS] [CrossRef] [Google Scholar]
- A. Demetriadou and J. Pendry, “Taming spatial dispersion in wire metamaterial” J. Phys. 20, 295222 (2008). [NASA ADS] [Google Scholar]
- J. A. Kong, Electromagnetic Wave Theory (New York: Wiley. 1986) [Google Scholar]
- T. Koschny, L. Zhang, and C. M. Soukoulis, “Isotropic three-dimensional left-handed metamaterials” Phys. Rev. B. 71, 121103 (2005). [NASA ADS] [CrossRef] [Google Scholar]
- T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays” Nature 391, 667 (1998). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.