Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 1, 2006
|
|
---|---|---|
Article Number | 06025 | |
Number of page(s) | 6 | |
DOI | https://doi.org/10.2971/jeos.2006.06025 | |
Published online | 20 November 2006 |
- H. A. Stone, A. D. Stroock, and A. Ajdari, “Engineering flows in small devices: Microfluidics toward a lab-on-a-chip” Annual Review Of Fluid Mechanics 36, 381–411 (2004). [NASA ADS] [CrossRef] [Google Scholar]
- G. M. Whitesides, E. Ostuni, S. Takayama, X. Y. Jiang, and D. E. Ingber, “ Soft lithography in biology and biochemistry” Annual Review Of Biomedical Engineering 3, 335–373 (2001). [CrossRef] [Google Scholar]
- D. Sinton, “Microscale flow visualization” Microfluidics and Nanofluidics 1, 2–21 (2004). [CrossRef] [Google Scholar]
- G. Comte-Bellot, “Hot-wire anemometry” Annual Review Of Fluid Mechanics 8, 209–231 (1976). [NASA ADS] [CrossRef] [Google Scholar]
- S. Kurada, G. W. Rankin, and K. Sridhar, “Particle-imaging techniques for quantitative flow visualization - a review” “Optics And Laser Technology” 25(4), 219–233 (1993). [CrossRef] [Google Scholar]
- H. Muller-mohnssen, D. Weiss, and A. Tippe, “Concentration dependent changes of apparent slip in polymer-solution flow” Journal Of Rheology 34(2), 223–244 (1990). [NASA ADS] [CrossRef] [Google Scholar]
- J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, “A particle image velocimetry system for microfluidics” Experiments In Fluids 25(4), 316–319 (1998). [NASA ADS] [CrossRef] [Google Scholar]
- A. F. Mendez-Sanchez, J. Perez-Gonzalez, L. de Vargas, J. R. Castrejon-Pita, A. A. Castrejon-Pita, and G. Huelsz, “Particle image velocimetry of the unstable capillary flow of a micellar solution” Journal Of Rheology 47(6), 1455–1466 (2003). [NASA ADS] [CrossRef] [Google Scholar]
- F. Innings and C. Tragardh, “Visualization of the drop deformation and break-up process in a high pressure homogenizer” Chemical Engineering & Technology 28(8), 882–891 (2005). [CrossRef] [Google Scholar]
- BJ Thompson, JH Ward, and WR Zinky, “Application of holographic techniques for particle sizing analysis” Applied Optics 6(3), 519 (1967). [NASA ADS] [CrossRef] [Google Scholar]
- JD Trolinger, RA Belz, and WM Farmer, “Holographic techniques for the study of dynamic particle fields” Applied Optics 8(5), 957 (1969). [NASA ADS] [CrossRef] [Google Scholar]
- LM Weinstein, GB Beeler, and AM Lindemann, “High-speed holocinematographic velocimeter for studying turbulent flow control physics” American Institute of Aeronautics and Astronautics AIAA-526 (1985). [Google Scholar]
- H. Meng, W.L. Anderson, F. Hussain, and D. D. Liu, “Intrinsic speckle noise in in-line particle holography” Optical Society of America Journal A 10, 2046–2058 (1993). [NASA ADS] [CrossRef] [Google Scholar]
- H Meng and F Hussain, “In-line recording and off-axis viewing technique for holographic particle velocimetry” Applied Optics 34, 1827 (1995). [NASA ADS] [CrossRef] [Google Scholar]
- B. P. Mosier, J. I. Molho, and Santiago J. G, “Photobleached-fluorescence imaging of microflows” Experiments In Fluids 33(4), 545–554 (2002). [NASA ADS] [CrossRef] [Google Scholar]
- C. Ybert, F. Nadal, R. Salome, F. Argoul, and L. Bourdieu, “Electrically induced microflows probed by fluorescence correlation spectroscopy” European Physical Journal E 16(3), 259–266 (2005). [NASA ADS] [CrossRef] [Google Scholar]
- W. R. Lempert, K. Magee, P. Ronney, K. R. Gee, and R. P. Haugland, “Flow tagging velocimetry in incompressible-flow using photo-activated nonintrusive tracking of molecular-motion (phantomm)” Experiments In Fluids 18(4), 249 (1995). [NASA ADS] [CrossRef] [Google Scholar]
- B. Stier and M. M. Koochesfahani, “Molecular tagging velocimetry (mtv) measurements in gas phase flows” Experiments in Fluids V26(4), 297–304 (1999). [NASA ADS] [CrossRef] [Google Scholar]
- C. Zettner and M. Yoda, “Particle velocity field measurements in a near-wall flow using evanescent wave illumination” Experiments in Fluids V34(1), 115–121 (2003). [NASA ADS] [CrossRef] [Google Scholar]
- K. D. Kihm, A. Banerjee, C. K. Choi, and T. Takagi, “Near-wall hindered brownian diffusion of nanoparticles examined by three-dimensional ratiometric total internal reflection fluorescence microscopy (3-d r-tirfm)” Experiments in Fluids V37(6), 811–824 (2004). [NASA ADS] [CrossRef] [Google Scholar]
- R. Bonner and R. Nossal, “Model for laser doppler measurements of blood flow in tissue” Applied Optics 20, 2097–2107 (1981). [NASA ADS] [CrossRef] [Google Scholar]
- J. D. Briers, “Laser doppler and time-varying speckle: a reconciliation” Optical Society of America Journal A 13, 345 (1996). [NASA ADS] [CrossRef] [Google Scholar]
- H Nakase, OS Kempski, A Heimann, T Takeshima, and J. Tintera, “Microcirculation after cerebral venous occlusions as assessed by laser doppler scanning” J. Neurosurg. 87(2), 307–314 (1997). [CrossRef] [Google Scholar]
- Beau M. Ances, Joel H. Greenberg, and John A. Detre, “Laser doppler imaging of activation-flow coupling in the rat somatosensory cortex” NeuroImage, 10(6), 716–723 (1999). [CrossRef] [Google Scholar]
- Ralf Steinmeier, Imre Bondar, Christian Bauhuf, and Rudolf Fahlbusch, “Laser doppler flowmetry mapping of cerebrocortical microflow: Characteristics and limitations” NeuroImage 15(1), 107–119 (2002). [CrossRef] [Google Scholar]
- C.D. Meinhart, S.T. Wereley, and J.G. Santiago, Micron-Resolution Velocimetry Techniques, in Developments in Laser Techniques and Applications to Fluid Mechanics, (Springer, 1998). [Google Scholar]
- M. Atlan and M. Gross, “Laser doppler imaging, revisited” Review of Scientific Instruments 77(11), 2006. [CrossRef] [Google Scholar]
- H. Komine and S. J. Brosnan, Instantaneous, three-component, doppler global velocimetry pages 273–277 (1991). [Google Scholar]
- J. Meyers and H. Komine, “Doppler global velocimetry: A new way to look at velocity” Laser Anemometry 1, 289 (1991). [NASA ADS] [Google Scholar]
- James F Meyers, Joseph W Lee, and Richard J Schwartz, “Characterization of measurement error sources in doppler global velocimetry” Measurement Science and Technology 12(4), 357–368 (2001). [NASA ADS] [CrossRef] [Google Scholar]
- C.-T Yang and H.-S Chuang, “Measurement of a microchamber flow by using a hybrid multiplexing holographic velocimetry” Experiments in Fluids V39(2), 385–396 (2005). [NASA ADS] [CrossRef] [Google Scholar]
- F. LeClerc, L. Collot, and M. Gross, “Numerical heterodyne holography with two-dimensional photodetector arrays” Optics Letters 25(10), 716–718 (2000). [NASA ADS] [CrossRef] [Google Scholar]
- M. Gross, P. Goy, and M. Al-Koussa, “Shot-noise detection of ultrasound-tagged photons in ultrasound-modulated optical imaging” Optics Letters 28, 2482–2484 (2003). [NASA ADS] [CrossRef] [Google Scholar]
- M. Atlan, M. Gross, T. Vitalis, A. Rancillac, B. C. Forget, and A. K. Dunn, “Frequency-domain, wide-field laser doppler in vivo imaging” Optics Letters 31(18) (2006). [Google Scholar]
- George W. Stroke, “Lensless fourier-transform method for optical holography” Applied Physics Letters 6(10), 201–203 (1965). [NASA ADS] [CrossRef] [Google Scholar]
- U. Schnars and W. Juptner, “Direct recording of holograms by a ccd target and numerical reconstruction” Applied Optics 33, 179–181 (1994). [NASA ADS] [CrossRef] [Google Scholar]
- Christoph Wagner, Sonke Seebacher, Wolfgang Osten, and Werner Juptner, “Digital recording and numerical reconstruction of lensless fourier holograms in optical metrology” Applied Optics 38, 4812–4820 (1999). [NASA ADS] [CrossRef] [Google Scholar]
- U. Schnars and W. P. O. Juptner, “Digital recording and numerical reconstruction of holograms” Meas. Sci. Technol. 13, R85–R101 (2002). [NASA ADS] [CrossRef] [Google Scholar]
- Thomas M. Kreis, “Frequency analysis of digital holography” Optical Engineering 41(4), 771–778 (2002). [NASA ADS] [CrossRef] [Google Scholar]
- J. Leng, B. Lonetti, P. Tabeling, M. Joanicot, and A. Ajdari, “Microevaporators for the kinetic inspection of phase diagrams” Physical Review Letters 96(8), 084503 (2006). [CrossRef] [Google Scholar]
- J. Goulpeau, D. Trouchet, A. Ajdari, and P. Tabeling, “Experimental study and modeling of polydimethylsiloxane peristaltic micropumps” Journal of Applied Physics 98(4) (2005). [CrossRef] [Google Scholar]
- E. Verneuil, A. Buguin, and P. Silberzan, “Permeation-induced flows: Consequences for silicone-based microfluidics” Europhysics Letters 68(3), 412–418 (2004). [NASA ADS] [CrossRef] [Google Scholar]
- A. Serov, W. Steenbergen, and F. de Mul, “Laser doppler perfusion imaging with complementary metal oxide semiconductor image sensor” Optics Letters 27, 300 (2002). [NASA ADS] [CrossRef] [Google Scholar]
- Y. Yeh and H. Z. Cummins, “Localized fluid flow measurements with an he-ne laser spectrometer” Appl. Phys. Lett. 4, 176–179 (1964). [CrossRef] [Google Scholar]
- B. J. Berne and R. Pecora, Dynamic Light Scattering, (Dover, 2000). [Google Scholar]
- Ichirou Yamaguchi, Jun ichi Kato, Sohgo Ohta, and Jun Mizuno, “Image formation in phase-shifting digital holography and applications to microscopy” Applied Optics 40(34), 6177–6186 (2001). [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.