Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 1, 2006
|
|
---|---|---|
Article Number | 06026 | |
Number of page(s) | 4 | |
DOI | https://doi.org/10.2971/jeos.2006.06026 | |
Published online | 23 November 2006 |
- S. John, “Strong localization of photons in certain disordered dielectric superlattices” Phys. Rev. Lett. 58, 2486 – 2489 (1987). [NASA ADS] [CrossRef] [Google Scholar]
- E. Yablonovitch, “Inhibited spontaneous emission in solid state physics and electronics” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef] [PubMed] [Google Scholar]
- J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic crystals: molding the flow of light (Princeton University Press, Princeton, 1995). [Google Scholar]
- S. Y. Lin, V. M. Hietala, L. Wang, and E. D. Jones, “Highly dispersive photonic band-gap prism” Opt Lett 21, 1771–1773 (1996). [NASA ADS] [CrossRef] [Google Scholar]
- H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals” Phys. Rev. B 58, R10096–R10099 (1998). [CrossRef] [Google Scholar]
- D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics” Nature 442, 381 – 386 (2006). [CrossRef] [PubMed] [Google Scholar]
- P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu, “Microfluidic tunable photonic band-gap device”, Appl. Phys. Lett. 84, 1838 – 1840 (2004). [NASA ADS] [CrossRef] [Google Scholar]
- D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, “Nanofluidic tuning of photonic crystal circuits” Opt. Lett. 31, 59 – 61 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- J. C. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, “Microfluidic tunable dye laser with integrated mixer and ring resonator” Appl. Phys. Lett. 86, 264101 (2005). [NASA ADS] [CrossRef] [Google Scholar]
- C. Grillet, P. Domachuk, V. Ta’eed, E. Magi, J. A. Bolger, B. J. Eggleton, L. E. Rodd, and J. Cooper-White, “Compact tunable microfluidic interferometer” Opt. Express 12, 5440 – 5447 (2004). [CrossRef] [Google Scholar]
- H. Kurt and D. S. Citrin, “Coupled-resonator optical waveguides for biochemical sensing of nanoliter volumes of analyte in the terahertz region” Appl. Phys. Lett. 87, 241119 (2005). [NASA ADS] [CrossRef] [Google Scholar]
- M. Gersborg-Hansen, S. Balslev, N. A. Mortensen, and A. Kristensen, “A coupled cavity micro-fluidic dye ring laser”, Microelectron. Eng. 78-79, 185 – 189 (2005). [CrossRef] [Google Scholar]
- Z. Y. Li, Z. Y. Zhang, T. Emery, A. Scherer, and D. Psaltis, “Single mode optofluidic distributed feedback dye laser” Opt. Express 14, 696 – 701 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- M. Gersborg-Hansen and A. Kristensen, “Optofluidic third order distributed feedback dye laser” Appl. Phys. Lett. 89, 103518 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity” Opt. Lett. 29, 1093 – 1095 (2004). [NASA ADS] [CrossRef] [Google Scholar]
- S. Xiao and N. A. Mortensen, “Highly sensitive optofluidic biosensors based on dispersive photonic crystal waveguides” Appl. Phys. Lett. (submitted). [Google Scholar]
- S. Xiao, M. Qiu, Z. Ruan, and S. He, “Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction” Appl. Phys. Lett. 85, 4269–4271 (2004). [NASA ADS] [CrossRef] [Google Scholar]
- Z. Ruan, M. Qiu, S. Xiao, S. He, and L. Thylen, “Coupling between plane waves and Bloch waves in photonic crystal with negative refraction” Phys. Rev. B 71, 045111 (2005). [NASA ADS] [CrossRef] [Google Scholar]
- A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2 edn. (Artech House INC, Norwood, 2000). [Google Scholar]
- J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves” J. Comput. Phys. 114, 185–200 (1994). [CrossRef] [Google Scholar]
- S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis” Opt. Express 8, 173 – 190 (2001). [NASA ADS] [CrossRef] [Google Scholar]
- K. Okamoto, M. Sugita, Y. Nagotomo, J. Yamamichi, T. Yamazaki, and M. Uchiba, “Photonic crystal sensor with micro flow channels”, International Symposium on Photonic and Electromagnetic Crystal Structures (PECS-VI), June 19-24, Crete, Greece, 2005. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.