Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 1, 2006
Article Number 06024
Number of page(s) 6
DOI https://doi.org/10.2971/jeos.2006.06024
Published online 20 November 2006
  1. T. Kreis, Holographic Interferometry : Principles and Methods, (Akademie Verlag Series in Optical Metrology 1, Akademie Verlag Berlin 1996). [Google Scholar]
  2. J.P. Huignard, J.P. Herriau, “Real-time double-exposure interferometry with Bi12SiO20 crystals in transverse electrooptic configuration” Appl. Opt. 16, 1807 (1977). [NASA ADS] [CrossRef] [Google Scholar]
  3. J.P. Huignard, J.P. Herriau, T. Valentin, “Time average holographic interferometry with photoconductive electrooptic Bi12SiO20 crystals” Appl. Opt. 16, 2796 (1977). [NASA ADS] [CrossRef] [Google Scholar]
  4. A.A. Kamshilin, M.P. Petrov, “Continuous reconstruction of holographic interferograms through anisotropic diffraction in photorefractive crystals” Opt. Commun. 53, 23 (1985). [NASA ADS] [CrossRef] [Google Scholar]
  5. D. Tontchev, S. Zhivkova, “Enhancement of the signal-to-noise ratio during holographic recording in sillenite” Opt. Lett. 17, 1715 (1992). [NASA ADS] [CrossRef] [Google Scholar]
  6. L. Labrunie, G. Pauliat, J.C. Launay, S. Leidenbach, G. Roosen, “Real-time double exposure holographic phase shifting interferometer using a photorefractive crystal” Opt. Commun. 140, 119 (1997). [NASA ADS] [CrossRef] [Google Scholar]
  7. F. Rickermann, S. Riehemann, G. von Bally, “Utilization of photorefractive crystals for holographic double-exposure interferometry with nanosecond laser pulses” Opt. Comm. 155, 91 (1998). [NASA ADS] [CrossRef] [Google Scholar]
  8. E. Weidner, G. Pauliat, G. Roosen, “Wavefront buffer memory based interferometric camera with a photorefractive crystal as the active medium” J. Opt. A: Pure Appl. Opt. 5, S524–S528 (2003). [CrossRef] [Google Scholar]
  9. M. Georges, G. Pauliat, E. Weidner, S. Giet, C. Thizy, V. Scauflaire, Ph. Lemaire, G. Roosen, “Holographic interferometry with a 90° photorefractive crystal geometry” in: OSA Trends in Optics and Photonics, Advances in photorefractive Materials, Effects, and Devices 87, 511 (2003). [CrossRef] [Google Scholar]
  10. M.P. Georges, Ph.C. Lemaire, “Real-time holographic interferometry using sillenite photorefractive crystals. Study and optimization of a transportable set-up for quantified phase measurements on large objects” Appl. Phys. B 68, 1073 (1999). [NASA ADS] [CrossRef] [Google Scholar]
  11. M.P. Georges, Ph.C. Lemaire, “Real-time stroboscopic holographic interferometry using sillenite crystals for the quantitative analysis of vibrations” Opt. Comm. 145, 249 (1998). [NASA ADS] [CrossRef] [Google Scholar]
  12. G. Pauliat, G. Roosen, “Continuous monitoring of a surface slope by real-time shearing interferometry with a photorefractive crystal” Appl. Opt. 45, 993 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  13. A.A. Kamshilin, V.V. Prokofiev, “Fast adaptive interferometer with a photorefractive GaP crystal” Opt. Lett. 27, 1711 (2002). [NASA ADS] [CrossRef] [Google Scholar]
  14. J. Frejlich, P.M. Garcia, “Advances in real-time holographic interferometry for the measurement of vibrations and deformations” Opt. Lasers Eng. 32, 515 (1999). [NASA ADS] [CrossRef] [Google Scholar]
  15. R.C. Troth, J.C. Dainty, “Holographic-interferometry using anisotropic self-diffraction in Bi12SiO20” Opt. Lett. 16, 53 (1991). [NASA ADS] [CrossRef] [Google Scholar]
  16. L. Peng, P. Yu, D.D. Nolte, M.R. Melloch, “High-speed adaptive interferometer for optical coherence-domain reflectometry through turbid media” Opt. Lett. 28, 396 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  17. M.R.R. Gesualdi, D. Soga, M. Muramatsu, “Real-time holographic interferometry using photorefractive sillenite crystals with phase-stepping technique” Opt. Lasers Eng. 44, 56 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  18. M. P. Georges, V. S. Scauflaire, Ph. C. Lemaire, “Compact and portable holographic camera using photorefractive crystals. Application in various metrological problems” Appl. Phys. B 72, 761 (2001). [NASA ADS] [CrossRef] [Google Scholar]
  19. P. Delaye, A. Blouin, D. Drolet, L.A. deMontmorillon, G. Roosen, J.P. Monchalin, “Detection of ultrasonic motion of a scattering surface by photorefractive InP:Fe under an applied dc field” J. Opt. Soc. Am B 14, 1723 (1997). [NASA ADS] [CrossRef] [Google Scholar]
  20. L.A. deMontmorillon, P. Delaye, J.C. Launay, G. Roosen, “Novel theoretical aspects on photorefractive ultrasonic detection and implementation of a sensor with an optimum sensitivity” J. Appl. Phys. 82, 5913 (1997). [NASA ADS] [CrossRef] [Google Scholar]
  21. OPTRION S.A., http://www.optrion-tech.com [Google Scholar]
  22. M. Takeda, H. Ina, S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry” J. Opt. Soc. Am. 72, 156 (1982). [NASA ADS] [CrossRef] [Google Scholar]
  23. T. Schwider, “Advanced evaluation techniques in interferometry”, in Progress in Optics, E. Wolf ed., Vol. XXVIII, (Elsevier Science Publishers, B.V, 1990). [Google Scholar]
  24. S. Mallick, “Common path interferometers”, in Optical Shop Testing, D. Malacara ed., page 95, (John Wiley & Sons, Inc. 1992). [Google Scholar]
  25. M.V. Mantravadi, “Lateral shearing interferometers”, in Optical Shop Testing, D. Malacara ed., page 123, (John Wiley & Sons, Inc. 1992). [Google Scholar]
  26. D. Malacara, “Radial, rotational, and reversal shear interferometers”, in Optical Shop Testing, D. Malacara ed., page 173, (John Wiley & Sons, Inc. 1992). [Google Scholar]
  27. A.J.P. van Haasteren, H.J. Frankena, “Real-time displacement measurement using a multicamera phase-stepping speckle interferometer” Appl. Opt. 33, 4137 (1994). [NASA ADS] [CrossRef] [Google Scholar]
  28. A.L. Weijers, H. van Brug, H.J. Frankena, “Polarization phase stepping with a Savart element” Appl. Opt. 37, 5150 (1988). [NASA ADS] [CrossRef] [Google Scholar]
  29. G. Sirat, D. Psaltis, “Conoscopic holography” Opt. Lett. 10, 4 (1985). [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.