Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 1, 2006
Article Number 06008
Number of page(s) 4
DOI https://doi.org/10.2971/jeos.2006.06008
Published online 08 August 2006
  1. J. F. Nye and M. V. Berry, “Dislocations in wave trains” Proc. R. Soc. Lond. A 336, 165–190 (1974). [NASA ADS] [CrossRef] [Google Scholar]
  2. J. F. Nye, Natural focusing and fine structure of light (Institute of Physics Publishing, 1999). [Google Scholar]
  3. J. W. Goodman, Statistical Optics (Wiley, 1985). [Google Scholar]
  4. L. Allen and M. J. Padgett, “The Poynting vector in Laguerre-Gaussian beams and the interpretation of their angular momentum density” Opt. Commun. 184, 67–71 (2000). [NASA ADS] [CrossRef] [Google Scholar]
  5. M. V. Berry and M. R. Dennis,” Knotted and linked phase singularities in monochromatic waves” Proc. R. Soc. Lond. A 457, 2251–2263 (2001). [NASA ADS] [CrossRef] [Google Scholar]
  6. D. Rozas, C. T. Law, and G. A. Swartzlander, “Propagation dynamics of optical vortices” J. Opt. Soc. Am. B 14, 3054–3065 (1997). [NASA ADS] [CrossRef] [Google Scholar]
  7. M. V. Berry, “Much ado about nothing: optical dislocation lines (phase singularities, zeros, vortices…)”, in Proc. Int. Conf. on Singular Optics, M. S. Soskin, ed. (SPIE, 1998), vol. 3487, pp. 1–5 [NASA ADS] [CrossRef] [Google Scholar]
  8. J. F. Nye, “Local solutions for the interaction of wave dislocations” J. Opt. A: Pure Appl. Opt. 6, S251–S254 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  9. J. Ruostekoski and Z. Dutton, “Engineering vortex rings and systems for controlled studies of vortex interactions in Bose-Einstein condensates” Phys. Rev. A 72 063626 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  10. Persistence of Vision Pty. Ltd, Persistence of Vision Raytracer (Version 3.6, 2004), http://www.povray.org [Google Scholar]
  11. K. O’Holleran, M. J. Padgett, and M. R. Dennis, “Topology of optical vortex lines formed by the interference of three, four, and five plane waves” Opt. Express 14, 3039–3044 (2006). [CrossRef] [Google Scholar]
  12. M. V. Berry and M. R. Dennis, “Knotting and unknotting of phase singularities: Helmholtz waves, paraxial waves and waves in 2+1 dimensions” J. Phys. A:Math. Gen. 34, 8877–8888 (2001). [NASA ADS] [CrossRef] [Google Scholar]
  13. M. V. Berry, “Optical vortices evolving from helicoidal integer and fractional phase steps” J. Opt. A: Pure Appl. Opt. 6, 259–268 (2004). [CrossRef] [Google Scholar]
  14. J. Leach, E. Yao, and M. J. Padgett, “Observation of the vortex structure of a non-integer vortex beam” New J. Phys. 6, 71 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  15. J. Leach, M. R. Dennis, J. Courtial, and M. J. Padgett, “Vortex knots in light” New J. Phys. 7, 55 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  16. J. Leach, M. R. Dennis, J. Courtial, and M. J. Padgett, “Knotted threads of darkness” Nature 432, 165 (2005). [Google Scholar]
  17. J. F. Nye, “From Airy rings to the elliptic umbilic diffraction catastrophe” J. Opt. A: Pure Appl. Opt. 5, 503–510 (2003). [CrossRef] [Google Scholar]
  18. J. F. Nye, “Evolution of the hyperbolic umbilic diffraction catastrophe from Airy rings” J. Opt. A: Pure Appl. Opt. 8, 304–314 (2006). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.