Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 1, 2006
Article Number 06009
Number of page(s) 7
DOI https://doi.org/10.2971/jeos.2006.06009
Published online 24 August 2006
  1. J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding” Opt. Lett. 21, 1547–1549 (1996). [NASA ADS] [CrossRef] [Google Scholar]
  2. T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly single mode photonic crystal fibre” Opt. Lett. 22, 961–963 (1997). [NASA ADS] [CrossRef] [Google Scholar]
  3. T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres” Electron. Lett. 36, 1998–2000 (2000). [NASA ADS] [CrossRef] [Google Scholar]
  4. V. V. R. K. Kumar, A. K. George, W. H. Reeves, J. C. Knight, P. S. J. Russell, F. G. Omenetto, and A. J. Taylor, “Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation” Opt. Express 10, 1520–1525 (2002). [NASA ADS] [CrossRef] [Google Scholar]
  5. V. V. R. K. Kumar, A. K. George, J. C. Knight, and P. S. J. Russell, “Tellurite photonic crystal fiber” Opt. Express 11, 2641–2645 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  6. H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, “Bismuth glass holey fibers with high nonlinearity” Opt. Express 12, 5082–5087 (2004). [CrossRef] [Google Scholar]
  7. E. Rave, P. Ephrat, M. Goldberg, E. Kedmi, and A. Katzir, “Silver halide photonic crystal fibers for the middle infrared” Appl. Opt. 43, 2236–2241 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  8. M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide” Jap. J. Appl. Phys. 43, L317–L319 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  9. M. A. van Eijkelenborg, M. C. J. Large, A. Argyros, J. Zagari, S. Manos, N. A. Issa, I. Bassett, S. Fleming, R. C. McPhedran, C. M. de Sterke, and N. A. P. Nicorovici, “Microstructured polymer optical fibre” Opt. Express 9, 319–327 (2001). [NASA ADS] [CrossRef] [Google Scholar]
  10. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic crystals: molding the flow of light (Princeton University Press, Princeton, 1995). [Google Scholar]
  11. N. A. Mortensen, “Semianalytical approach to short-wavelength dispersion and modal properties of photonic crystal fibers” Opt. Lett. 30, 1455 – 1457 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  12. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis” Opt. Express 8, 173–190 (2001). [NASA ADS] [CrossRef] [Google Scholar]
  13. B. T. Kuhlmey, T. P. White, G. Renversez, D. Maynstre, L. C. Botton, C. M. de Sterke, and R. C. McPhedran, “Multipole method for microstructured optical fibers. II. Implementation and results” J. Opt. Soc. Am. B 19, 2331–2340 (2002). [NASA ADS] [CrossRef] [Google Scholar]
  14. K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on finite element scheme: Application to photonic crystal fibers” IEEE J. Quantum Electron. 38 927–933 (2002). [NASA ADS] [CrossRef] [Google Scholar]
  15. J. Riishede, N. A. Mortensen, and J. Lægsgaard, “A poor man’s approach to modelling of microstructured optical fibers” J. Opt. A: Pure. Appl. Opt. 5, 534 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  16. C. Flindt, N. A. Mortensen, and A. P. Jauho, “Quantum computing via defect states in two-dimensional antidot lattices” Nano Lett. 5, 2515 – 2518 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  17. P. A. Laura, E. Romanelli, and M. J. Maurizi, “On the analysis of waveguides of double-connected cross-section by the method of conformal mapping” J. Sound Vibr. 20, 27–38 (1972). [NASA ADS] [CrossRef] [Google Scholar]
  18. L. I. Glazman, G. K. Lesovik, D. E. Khmelnitskii, and R. I. Shekter, “Reflectionsless quantum transport and fundamental ballisticresistance steps in microscopic constrictions” JETP Lett. 48, 238–241 (1988). [NASA ADS] [Google Scholar]
  19. Femlab, http://www.comsol.com. [Google Scholar]
  20. N. A. Mortensen, J. R. Folkenberg, M. D. Nielsen, and K. P. Hansen, “Modal cut-off and the V–parameter in photonic crystal fibers” Opt. Lett. 28, 1879–1881 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  21. N. A. Mortensen, “Effective area of photonic crystal fibers” Opt. Express 10, 341–348 (2002). [NASA ADS] [CrossRef] [Google Scholar]
  22. K. Saitoh, Y. Tsuchida, M. Koshiba, and N. A. Mortensen, “Endlessly single-mode holey fibers: the influence of core design” Opt. Express 13, 10833 – 10839 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  23. K. Saitoh, M. Koshiba, and N. A. Mortensen, “Nonlinear photonic crystal fibres: pushing the zero-dispersion toward the visible” Special issue on nanophotonics to appear in New J. Phys. (2006). http://arxiv.org/physics/0608142 [Google Scholar]
  24. N. A. Mortensen and J. R. Folkenberg, “Low-loss criterion and effective area considerations for photonic crystal fibers” J. Opt. A: Pure Appl. Opt. 5, 163–167 (2003). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.