Open Access
Issue
J. Eur. Opt. Society-Rapid Publ.
Volume 21, Number 2, 2025
Article Number 38
Number of page(s) 8
DOI https://doi.org/10.1051/jeos/2025033
Published online 11 August 2025
  1. You D, Jones RR, Bucksbaum PH, Dykaar DR, Generation of high-power sub-single-cycle 500-fs electromagnetic pulses, Opt. Lett. 18, 290 (1993). https://doi.org/10.1364/OL.18.000290. [Google Scholar]
  2. Brabec T, Krausz F, Intense few-cycle laser fields: Frontiers of nonlinear optics. Rev. Mod. Phys. 72, 545 (2000). https://doi.org/10.1103/RevModPhys.72.545. [CrossRef] [Google Scholar]
  3. Lin Q, Zheng J, Becker W, Subcycle pulsed focused vector beams, Phys. Rev. Lett. 97, 253902 (2006). https://doi.org/10.1103/PhysRevLett.97.253902. [Google Scholar]
  4. Marceau C, Gingras G, Witzel B, Excitation with effective subcycle laser pulses, Phys. Rev. Lett. 111, 203005 (2013). https://doi.org/10.1103/PhysRevLett.111.203005. [Google Scholar]
  5. Hine GA, Doleans M, Intrinsic spatial chirp of subcycle terahertz pulsed beams, Phys. Rev. A. 104, 032229 (2021). https://doi.org/10.1103/PhysRevA.104.032229. [Google Scholar]
  6. Cai X, Zhao J, Wang Z, Lin Q, Ultrafast coherent population transfer in two- and three-level quantum systems using sub-cycle and single-cycle pulses, J. Phys. B: At. Mol. Opt. Phys. 46, 175602 (2013). https://doi.org/10.1088/0953-4075/46/17/175602. [Google Scholar]
  7. Wang ZY, Lin Q, Wang ZY, Single-cycle electromagnetic pulses produced by oscillating electric dipoles, Phys Rev. E. 67, 016503 (2003). https://doi.org/10.1103/PhysRevE.67.016503. [Google Scholar]
  8. Sauge S, Swillo M, A single-crystal source of path/polarization entanglement at non-degenerate wavelengths, Opt. Spectrosc. 108, 165–169 (2010). https://doi.org/10.1134/S0030400X10020037. [Google Scholar]
  9. Zhao CY, Tan WH, Propagation characteristics of biphotons in cold atomic vapor, Chin. Opt. Lett. 12, 102701 (2014). https://opg.optica.org/col/abstract.cfm?URI=col-12-10-102701. [Google Scholar]
  10. Dadoenkova YS, et al., Difference-frequency generation of thz radiation via parametric three-wave interaction in CdTe and ZnTe Crystals, Opt. Spectrosc. 124, 712–719 (2018). https://doi.org/10.1134/S0030400X18050053. [Google Scholar]
  11. Klaiber M, et al., Subcycle time-resolved nondipole dynamics in tunneling ionization, Phys. Rev. A 105, 053107 (2022). https://doi.org/10.1103/PhysRevA.105.053107. [Google Scholar]
  12. Chen Y, Liu CD, Li RX, Probing Rashba spin-orbit coupling by subcycle lightwave control of valley polarization, Phys. Rev. Res. 5, 013098 (2023). https://doi.org/10.1103/PhysRevResearch.5.013098. [Google Scholar]
  13. Iskhakov T, Chekhova MV, Leuchs G, Generation and direct detection of broadband mesoscopic polarization-squeezed vacuum, Phys. Rev. Lett. 102, 183602 (2009). https://doi.org/10.1103/PhysRevLett.102.183602. [CrossRef] [Google Scholar]
  14. Keller TE, Timothy E, Rubin MH, Theory of two-photon entanglement for spontaneous parametric down-conversion driven by a narrow pump pulse, Phys. Rev. A. 56, 1534 (1997). https://doi.org/10.1103/PhysRevA.56.1534. [Google Scholar]
  15. Chekhova MV, et al., Spectral properties of three-photon entangled states generated via three-photon parametric down-conversion in a χ(3) medium, Phys. Rev. A 72, 023818 (2005). https://doi.org/10.1103/PhysRevA.72.023818. [Google Scholar]
  16. Paterova A, et al., Nonlinear infrared spectroscopy free from spectral selection, Sci. Rep. 7, 42608 (2017). https://doi.org/10.1038/srep42608. [Google Scholar]
  17. Lindner C, et al., Fourier transform infrared spectroscopy with visible light, Opt. Express 28(4), 4426 (2020). https://doi.org/10.1364/OE.382351. [Google Scholar]
  18. Hojo M, Tanaka K, Broadband infrared light source by simultaneous parametric down-conversion, Sci. Rep. 11, 17986 (2021). https://doi.org/10.1038/s41598-021-97531-w. [Google Scholar]
  19. Dauler E, Jaeger G, Muller A, Migdall A, Sergienko A, Tests of a two-photon technique for measuring polarization mode dispersion with subfemtosecond precision, J. Res. Natl. Inst. Stand. Techn. 104, 1 (1999). https://doi.org/10.6028/jres.104.001. [Google Scholar]
  20. Fraine A, Minaeva O, Simon DS, Egorov E, Sergienko AV, Broadband source of polarization entangled photons, Opt. Lett 37, 1910 (2012). https://doi.org/10.1364/OL.37.001910. [Google Scholar]
  21. Gatti A, Corti T, Brambilla E, Horoshko DB, Dimensionality of the spatiotemporal entanglement of parametric down-conversion photon pairs, Phys. Rev. A. 86, 053803 (2012). https://doi.org/10.1103/PhysRevA.86.053803. [Google Scholar]
  22. Hendrych M, Shi XJ, Valencia A, Torres JP, Broadening the bandwidth of entangled photons: A step towards the generation of extremely short biphotons, Phys. Rev. A. 79, 023817 (2009). https://doi.org/10.1103/PhysRevA.79.023817. [Google Scholar]
  23. Harris SE, Chirp and compress: toward single-cycle biphotons, Phys. Rev. Lett. 98, 063602 (2007). https://doi.org/10.1103/PhysRevLett.98.063602. [NASA ADS] [CrossRef] [Google Scholar]
  24. Pignatiello F, et al., Measurement of the thermal expansion coefficients of ferroelectric crystals by a moiré interferometer. Opt. Comm. 277, 1 2007. https://doi.org/10.1016/j.optcom.2007.04.045. [Google Scholar]
  25. Tanaka A, et al., Noncollinear parametric fluorescence by chirped quasi-phase matching for monocycle temporal entanglement, Opt. Exp. 20, 25228 (2012). https://doi.org/10.1364/OE.20.025228. [Google Scholar]
  26. Fejer MM, et al., Quasi-phase-matched second harmonic generation: tuning and tolerances. IEEE J. Quant. Electron. 28(11), 2631 (1992). https://doi.org/10.1109/3.161322. [Google Scholar]
  27. Tang CL, Cheng LK, Fundamentals of optical parametric processes and oscillators (Harwood Academic Publishers, Amsterdam, 1995). [Google Scholar]
  28. Armstrong JA, et al., Interactions between light waves in a nonlinear dielectric, Phys. Rev. 127, 1918 (1962). https://doi.org/10.1103/PhysRev.127.1918. [CrossRef] [Google Scholar]
  29. Myers LE, et al., Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3, J. Opt. Soc. Am. B 12, 2102 (1995). https://doi.org/10.1364/JOSAB.12.002102. [CrossRef] [Google Scholar]
  30. Charbonneau-Lefort M, Afeyan B, Fejer MM, Optical parametric amplifiers using chirped quasi-phase-matching gratings I: practical design formulas, J. Opt. Soc. Am. B 25, 463 (2008). https://doi.org/10.1364/JOSAB.25.000463. [NASA ADS] [CrossRef] [Google Scholar]
  31. Wang J, Lin H, The single-cycle biphotons generated by noncollinear SPDC in the chirped QPM crystals, J. Eur. Opt. Society-Rapid Publ. 20, 6 (2024). https://doi.org/10.1051/jeos/2024004. [Google Scholar]
  32. Li BH, Xu YG, Zhu HF, Lin FK, Li YF, Temporal compression and shaping of chirped biphotons using Fresnel-inspired binary phase shaping, Phys. Rev. A 91, 023827 (2015). https://doi.org/10.1103/PhysRevA.91.023827. [Google Scholar]
  33. Nasr MB, et al., Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion, Phys. Rev. Lett. 100, 183601 (2008). https://doi.org/10.1103/PhysRevLett.100.183601. [NASA ADS] [CrossRef] [Google Scholar]
  34. Pe’er A, Dayan B, Friesem AA, Silberberg Y, Temporal shaping of entangled photons, Phys. Rev. Lett. 94, 073601 (2005). https://doi.org/10.1103/PhysRevLett.94.073601. [Google Scholar]
  35. Hobden MV, Warner J, The temperature dependence of the refractive indices of pure lithium niobate, Phys. Lett. 22, 243 (1966). https://doi.org/10.1016/0031-9163(66)90591-9. [Google Scholar]
  36. Edwards GJ, Lawrence M, A temperature-dependent dispersion equation for congruently grown lithium niobate, Opt. Quantum Electron. 16, 373 (1984). https://doi.org/10.1007/BF00620081. [Google Scholar]
  37. Jundt DH, Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate, Opt. Lett 20 (22), 1553 (1997). https://doi.org/10.1364/OL.22.001553. [Google Scholar]
  38. Deng LH, et al., Improvement to Sellmeier equation for periodically poled LiNbO3 crystal using mid-infrared difference-frequency generation, Opt. Comm. 268, 110 (2006). https://doi.org/10.1016/j.optcom.2006.06.082. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.