Open Access
Issue
J. Eur. Opt. Society-Rapid Publ.
Volume 21, Number 2, 2025
Article Number 36
Number of page(s) 15
DOI https://doi.org/10.1051/jeos/2025025
Published online 31 July 2025
  1. Dalloz N, et al., Anti-counterfeiting white light printed image multiplexing by fast nanosecond laser processing, Adv. Mater. 34(2), 2104054 (2022). https://doi.org/10.1002/adma.202104054. [Google Scholar]
  2. Geng J, Xu L, Yan W, Shi L, Qiu M, High-speed laser writing of structural colors for full-color inkless printing, Nat. Commun. 14, 565 (2023). https://doi.org/10.1038/s41467-023-36275-9. [Google Scholar]
  3. Mezera M, Florian C, Willem RG, Krüger J, Bonse J, Creation of material functions by nanostructuring, in: Ultrafast laser nanostructuring: the pursuit of extreme scales, edited by Stoian R, Bonse J (Springer International Publishing, Cham, 2023), p. 827–886. https://doi.org/10.1007/978. [Google Scholar]
  4. Bonse J, Gräf S, Ten open questions about laser-induced periodic surface structures, Nanomaterials, 11(12), 3326 (2021). https://doi.org/10.3390/nano11123326. [Google Scholar]
  5. Maragkaki S, et al., Influence of defects on structural colours generated by laser-induced ripples. Sci. Rep. 10, 53 (2020). https://doi.org/10.1038/s41598-019-56638-x. [Google Scholar]
  6. Zhang S, et al., Laser writing of multilayer structural colors for full-color marking on steel, Adv. Photon. Res. 5(1), 2300157 (2024). https://doi.org/10.1002/adpr.202300157. [Google Scholar]
  7. Baumann E, Hofmann R, Schaer M, Print performance evaluation of ink jet media: Gamut and Dye Diffusion, J. Imaging Sci. Technol 44(6), 500–507 (2000). [Google Scholar]
  8. Chosson SM, Hersch RD, Color gamut reduction techniques for printing with custom inks, in: Color imaging: device-independent color, color hardcopy, and applications VII (SPIE, 2001). https://doi.org/10.1117/12.452980. [Google Scholar]
  9. Zhai Q, Luo MR, Study of chromatic adaptation via neutral white matches on different viewing media, Opt. Express, 26, 7724–7739 (2018). https://doi.org/10.1364/OE.26.007724. [Google Scholar]
  10. Choi B, Hu S, Guo R, He W, He D, Chiu GT, Allebach JP, Developing a gamut mapping method for a novel inkjet printer, Color Imaging: Displaying, Processing, Hardcopy, and Applications, 2841–2846 (2022). [Google Scholar]
  11. Morovič J, To develop a universal gamut mapping algorithm, PhD Thesis, University of Derby, 1998. [Google Scholar]
  12. Dalal EN, Rasmussen DR, Nakaya F, Crean PA, Sato M, Evaluating the overall image quality of hardcopy output, in: PICS 1998: IS&T’s 1998 Image Processing, Image Quality, Image Capture, Systems Conference, Portland, Oregon, USA, May 17–20, 1998. [Google Scholar]
  13. Bonnier N, Schmitt F, Brettel H, Berche S, Evaluation of spatial gamut mapping algorithms, in: Color and imaging Conference 14, 56-61 (Society of Imaging Science and Technology, 2006). [Google Scholar]
  14. Hardeberg JY, Bando E, Pedersen M, Evaluating colour image difference metrics for gamut‐mapped images, Color. Technol. 124(4), 243–253 (2008). [Google Scholar]
  15. Lin C, Mottaghi S, Shams L, The effects of color and saturation on the enjoyment of real-life images, Psychon. Bull. Rev. 31, 361–372 (2024). https://doi.org/10.3758/s13423-023-02357-4. [Google Scholar]
  16. Internationale Beleuchtungskommission, ed., Colorimetry, 3rd ed., Publication/CIE No. 15 (Comm. Internat. de l’éclairage, 2004). [Google Scholar]
  17. Morovic J, Sun PL, Visual differences in colour reproduction and their colorimetric correlates, in: Color and Imaging Conference (Vol. 10, pp. 292-297), (Society of Imaging Science and Technology, 2002). [Google Scholar]
  18. Gast G, Tse MK, A report on a subjective print quality survey conducted at Nip16. In: Nip & Digital Fabrication Conference, Soc. Imaging Sci. Technol. 2001(2), 723–727 (2001). [Google Scholar]
  19. Miyata K, Tsumura N, Haneishi H, Miyake Y, Subjective image quality for multi-level error diffusion and its objective evaluation method, J. Imaging Sci. Technol. 43(2), 170–177 (1999). [Google Scholar]
  20. Norberg O, Westin P, Lindberg S, Klaman M, Eidenvall L, A comparison of print quality between digital and traditional technologies, in: Proc. IS&T-SID DPP2001: International Conference on Digital Production Printing and Industrial Applications, Antwerp, Belgium, 2001. [Google Scholar]
  21. Andersson M, Norberg O, Color gamut: Is size the only thing that matters?, in: TAGA 2006 (TAGA, 2006), p. 273. [Google Scholar]
  22. Hunt RWG, The reproduction of colour (John Wiley & Sons, 2005). ISBN: 0-470-02425-9. [Google Scholar]
  23. Pedersen M, Bonnier N, Hardeberg JY, Albregtsen F, Attributes of image quality for color prints, J. Electron. Imaging 19, 011016 (2010). https://doi.org/10.1117/1.3277145. [Google Scholar]
  24. Montgomery DC, Design and Analysis of Experiments (John Wiley & Sons, 2017). [Google Scholar]
  25. Hocking RR, Methods and applications of linear models: regression and the analysis of variance, John Wiley & Sons, 2013). [Google Scholar]
  26. Wagenmakers EJ, Farrell S, AIC model selection using Akaike weights, Psychon. Bull. Rev. 11(1), 192–196 (2004). https://doi.org/10.3758/bf03206482. [Google Scholar]
  27. Burnham KP, Anderson DR, Model selection and inference. A practical information–theoretic approach (Springer-Verlag, Heidelberg, 1998). https://doi.org/10.1007/978-1-4757-2917-7_3. [Google Scholar]
  28. Burningham N, Pizlo Z, Allebach JP, Image quality metrics, Encyclopedia Imaging Sci. Technol. 1, 598–616 (2002). https://doi.org/10.1002/0471443395.img038. [Google Scholar]
  29. Khan MU, Luo MR, Tian D, No-reference image quality metrics for color domain modified images. J, Opt. Soc. Am. A 39, B65–B77 (2022). https://doi.org/10.1364/josaa.450595. [Google Scholar]
  30. Simone G, Oleari C, Farup I, An alternative color difference formula for computing image difference, in: Proceedings from Gjøvik Color Imaging Symposium, 2009. [Google Scholar]
  31. Sheikh HR, Bovik AC, Image information and visual quality, IEEE Trans. Image Process. 15(2), 430–444 (2006). https://doi.org/10.1109/TIP.2005.859378. [Google Scholar]
  32. Eldarova EL, Starovoitov VA, Iskakov KA, Comparative analysis of universal methods no reference quality assessment of digital images, J. Theor. Appl. Inf. Technol. 99(9), 1977–1987 (2021). [Google Scholar]
  33. Jost-Boissard S, Avouac P, Fontoynont M, Preferred color rendition of skin under LED sources, LEUKOS: The J. Illuminating Eng. Soc. North America 12(1–2), 1–15 (2016). https://doi.org/10.1080/15502724.2015.1060499. [Google Scholar]
  34. Hasler D, Suesstrunk SE, Measuring colorfulness in natural images, in: Human Vision and Electronic Imaging VIII, Vol. 5007, edited by Rogowitz BE, Pappas TN (SPIE, Santa Clara, CA, 2003), pp. 87–95. https://doi.org/10.1117/12.477378. [Google Scholar]
  35. Braun GJ, A Paradigm for color gamut mapping of pictorial images, Thesis, Rochester Institute of Technology, 1999. Accessed from https://repository.rit.edu/theses/2860. [Google Scholar]
  36. Sun PL, Morovic J, What differences do observers see in colour image reproduction experiments? Conference on Colour in Graphics, Imaging and Vision 1, 181–186 (2002). https://doi.org/10.2352/cgiv.2002.1.1.art00040. [Google Scholar]
  37. Rousseeuw PJ, Hubert M, Robust statistics for outlier detection, WIREs Data Min & Knowl 1, 73–79 (2011). https://doi.org/10.1002/widm.2. [Google Scholar]
  38. Rigau J, Feixas M, Sbert M, An information-theoretic framework for image complexity, in: Proceedings of the First Eurographics Conference on Computational Aesthetics in Graphics, Visualization and Imaging, Girona, Spain, 2005, pp. 177–184. [Google Scholar]
  39. Houser KW, Wei M, David A, Krames MR, Whiteness perception under LED Illumination, LEUKOS 10, 165–180 (2014). https://doi.org/10.1080/15502724.2014.902750. [Google Scholar]
  40. Akinwande MO, Dikko HG, Samson A, Variance inflation factor: as a condition for the inclusion of suppressor variable(s) in regression analysis, Open J. Stat. 05, 754 (2015). https://doi.org/10.4236/ojs.2015.57075. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.