EOSAM 2024
Open Access
Issue
J. Eur. Opt. Society-Rapid Publ.
Volume 21, Number 1, 2025
EOSAM 2024
Article Number 19
Number of page(s) 12
DOI https://doi.org/10.1051/jeos/2025016
Published online 29 April 2025
  1. Hentschel R, Braunecker B, Tiziani HJ (Eds.), Advanced Optics Using Aspherical Elements (SPIE, 2008). ISBN 9780819467492. https://doi.org/10.1117/3.741689. [CrossRef] [Google Scholar]
  2. Rolland JP, Davies MA, Suleski TJ, Evans C, Bauer A, Lambropoulos JC, Falaggis K, Freeform optics for imaging, Optica 8, 161 (2021). https://doi.org/10.1364/OPTICA.413762. [NASA ADS] [CrossRef] [Google Scholar]
  3. Van Gestel N, Cuypers S, Bleys P, Kruth JP, A performance evaluation test for laser line scanners on CMMs, Opt. Lasers Eng. 47, 336 (2009). https://doi.org/10.1016/j.optlaseng.2008.06.001. [Google Scholar]
  4. Weckenmann A, Estler T, Peggs G, McMurtry D, Probing systems in dimensional metrology, CIRP Ann. 53, 657 (2004). https://doi.org/10.1016/S0007-8506(07)60034-1. [Google Scholar]
  5. Forman PF, The Zygo interferometer system, in Interferometry, vol. 0192, edited by GW Hopkins (1979), pp. 41–49. http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1229011. [Google Scholar]
  6. Knauer MC, Kaminski J, Hausler G, Phase measuring deflectometry: a new approach to measure specular free-form surfaces, in Optical Metrology in Production Engineering, vol. 5457, edited by W Osten, M. Takeda (2004), p. 366, ISSN 0277786X. https://doi.org/10.1117/12.545704. [Google Scholar]
  7. Beutler A, Metrology for the production process of aspheric lenses, Adv. Opt. Technol. 5, 211 (2016). https://doi.org/10.1515/aot-2016-0011. [Google Scholar]
  8. Kulawiec A, Murphy P, DeMarco M, Measurement of high-departure aspheres using subaperture stitching with the Variable Optical Null (VON), in 5th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Advanced Optical Manufacturing Technologies, vol. 7655, edited by L. Yang, Y. Namba, D.D. Walker, S. Li, p. 765512 (2010). ISBN 9780819480859, ISSN 0277786X. https://doi.org/10.1117/12.864962. [Google Scholar]
  9. Küchel MF, Interferometric measurement of rotationally symmetric aspheric surfaces, Opt. Meas. Syst. Indust. Inspect. VI 7389, 389–422 (2009). https://doi.org/10.1117/12.830655. [Google Scholar]
  10. Greivenkamp JE, Gappinger RO, Design of a nonnull interferometer for aspheric wave fronts, Appl. Opt. 43, 5143 (2004). https://doi.org/10.1364/AO.43.005143. [Google Scholar]
  11. Garbusi E, Pruss C, Osten W, Interferometer for precise and flexible asphere testing, Opt. Lett. 33, 2973 (2008). https://doi.org/10.1364/OL.33.002973. [NASA ADS] [CrossRef] [Google Scholar]
  12. Baer G, Schindler J, Pruss C, Siepmann J, Osten W, Calibration of a non-null test interferometer for the measurement of aspheres and free-form surfaces, Opt. Express 22, 31200 (2014). https://doi.org/10.1364/OE.22.031200. [CrossRef] [Google Scholar]
  13. Schindler J, Baer G, Pruss C, Osten W, The tilted-wave-interferometer: freeform surface reconstruction in a non-null setup, in International Symposium on Optoelectronic Technology and Application 2014: Laser and Optical Measurement Technology; and Fiber Optic Sensors, vol. 9297, edited by J. Czarske, S. Zhang, D. Sampson, W. Wang, Y. Liao (2014), p. 92971. ISBN 9781628413830, ISSN 1996756X. https://doi.org/10.1117/12.2073053. [Google Scholar]
  14. Schachtschneider R, Stavridis M, Fortmeier I, Schulz M, Elster C, SimOptDevice: a library for virtual optical experiments, J. Sens. Sens. Syst. 8, 105 (2019). https://doi.org/10.5194/jsss-8-105-2019. [Google Scholar]
  15. Hariharan P, Oreb BF, Eiju T, Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm, Appl. Opt. 26, 2504 (1987). https://doi.org/10.1364/AO.26.002504. [Google Scholar]
  16. Goldstein RM, Zebker HA, Werner CL, Satellite radar interferometry: two-dimensional phase unwrapping, Radio Sci. 23, 713 (1988). https://doi.org/10.1029/RS023i004p00713. [Google Scholar]
  17. Fortmeier I, Stavridis M, Schulz M, Elster C, Development of a metrological reference system for the form measurement of aspheres and freeform surfaces based on a tilted-wave interferometer, Meas. Sci. Technol. 33, 045013 (2022). https://doi.org/10.1088/1361-6501/ac47bd. [CrossRef] [Google Scholar]
  18. Gronle A, Pruss C, Herkommer A, Misalignment of spheres, aspheres and freeforms in optical measurement systems, Opt. Express 30, 797 (2022). https://doi.org/10.1364/OE.443420. [Google Scholar]
  19. Fortmeier I, Stavridis M, Wiegmann A, Schulz M, Osten W, Elster C, Evaluation of absolute form measurements using a tilted-wave interferometer, Opt. Express 24, 3393 (2016). https://doi.org/10.1364/OE.24.003393. [CrossRef] [Google Scholar]
  20. Schmitz T, Evans C, Davies A, Estler W, Displacement uncertainty in interferometric radius measurements, CIRP Ann. 51, 451 (2002). https://doi.org/10.1016/S0007-8506(07)61558-3. [Google Scholar]
  21. Pruss C, Baer GB, Schindler J, Osten W, Measuring aspheres quickly: tilted wave interferometry, Opt. Eng. 56, 111713 (2017). https://doi.org/10.1117/1.OE.56.11.111713. [Google Scholar]
  22. Schindler J, Pruss C, Osten W, Increasing the accuracy of tilted-wave-interferometry by elimination of systematic errors, in Optical Measurement Systems for Industrial Inspection X, vol. 10329, edited by P. Lehmann, W. Osten, A. Albertazzi Gonçalves (2017), p. 1032904, ISBN 9781510611030, ISSN 1996756X. https://doi.org/10.1117/12.2270395. [Google Scholar]
  23. Schindler J, Pruss C, Osten W, Simultaneous removal of nonrotationally symmetric errors in tilted wave interferometry, Opt. Eng. 58, 1 (2019). https://doi.org/10.1117/1.OE.58.7.074105. [NASA ADS] [CrossRef] [Google Scholar]
  24. Baer G, Schindler J, Siepmann J, Pruß C, Osten W, Schulz M, Measurement of aspheres and free-form surfaces in a non-null test interferometer: reconstruction of high-frequency errors, Optical Measurement Systems for Industrial Inspection VIII, vol. 8788, edited by P.H. Lehmann, W. Osten, A. Albertazzi (2013), p. 878818. ISBN 9780819496041, ISSN 0277786X, https://doi.org/10.1117/12.2021518. [Google Scholar]
  25. Scholz G, Evers D, Fortmeier I, Influence of specimen positioning stage drift in tilted-wave interferometry for accurate form measurements for aspherical and freeform surfaces, in Optics and Photonics for Advanced Dimensional Metrology III, edited by P.J. de Groot, P. Picart, F. Guzman, vol. 12997, (SPIE, 2024), p. 42, ISBN 9781510673120. https://doi.org/10.1117/12.3017366. [Google Scholar]
  26. Thibos LN, Applegate RA, Schwiegerling JT, Webb R, Standards for reporting the optical aberrations of eyes, J. Refract. Surg. 18, 232 (2002). https://doi.org/10.3928/1081-597X-20020901-30. [Google Scholar]
  27. Niu K, Tian C, Zernike polynomials and their applications, J. Opt. 24, 123001 (2022). https://doi.org/10.1088/2040-8986/ac9e08. [NASA ADS] [CrossRef] [Google Scholar]
  28. Bradski G, The opencv library, Dr. Dobb’s J. Software Tools Profess. Program. 25, 120–123 (2000). [Google Scholar]
  29. Suzuki S, Be K, Topological structural analysis of digitized binary images by border following, Comput. Vis. Graph. Image Process. 30, 32 (1985). https://doi.org/10.1016/0734-189X(85)90016-7. [Google Scholar]
  30. Demtröder W, Experimentalphysik 1, Springer-Lehrbuch, 5th edn. (Springer Berlin Heidelberg, Berlin, Heidelberg, 2008), ISBN 978-3-540-79294-9. https://doi.org/10.1007/978-3-540-79295-6. [Google Scholar]
  31. Griesmann U, Soons J, Wang Q, DeBra D, Measuring form and radius of spheres with interferometry, CIRP Ann. 53, 451 (2004). https://doi.org/10.1016/S0007-8506(07)60737-9. [Google Scholar]
  32. Bronstein IN, Semendjajew KA, Musiol G, Mühlig H, Taschenbuch der Mathematik, 7th edn(Verlag Harri Deutsch, Frankfurt am Main, 2008), ISBN 978–3817120079. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.