Open Access
Issue
J. Eur. Opt. Society-Rapid Publ.
Volume 20, Number 2, 2024
Article Number 42
Number of page(s) 8
DOI https://doi.org/10.1051/jeos/2024040
Published online 13 December 2024
  1. Budden M, Gebert T, Buzzi M, Jotzu G, Wang E, Matsuyama T, Meier G, Laplace Y, Pontiroli D, Ricco M, Schlawin F, Jaksch D, Cavalleri A, Evidence for metastable photo-induced superconductivity in K3C60, Nat. Phys. 17(5), 611–618 (2021). [NASA ADS] [CrossRef] [Google Scholar]
  2. Lejman M, Weis M, Nilforoushan N, Faure J, Ta Phuoc V, Cario L, Boschetto D, Ultrafast photoinduced conductivity reduction by bonding orbital control in an incommensurate crystal, Phys. Rev. B 108, 134306 (2023). [NASA ADS] [CrossRef] [Google Scholar]
  3. Khalili A, Weis M, Mizrahi SG, Chu A, Dang TH, Abadie C, Gréboval C, Dabard C, Prado Y, Xu XZ, Péronne E, Livache C, Ithurria S, Patriarche G, Ramade J, Vincent G, Boschetto D, Lhuillier E, Guided-mode resonator coupled with nanocrystal intraband absorption, ACS Photon. 9, 985–993 (2022). [NASA ADS] [CrossRef] [Google Scholar]
  4. Maiuri M, Garavelli M, Cerullo G, Ultrafast spectroscopy: State of the art and open challenges, J. Am. Chem. Soc. 142(1), 3–15 (2020). [CrossRef] [Google Scholar]
  5. Mansart B, Boschetto D, Sauvage S, Rousse A, Marsi M, Mott transition in Cr-doped V2O3 studied by ultrafast reflectivity: Electron correlation effects on the transient response, Europhys. Lett. 92, 37007 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  6. Servol M, Moisan N, Collet E, Cailleau H, Kaszub W, Toupet L, Boschetto D, Ishikawa T, Moréac A, Koshihara S, Maesato M, Uruichi M, Shao X, Nakano Y, Yamochi H, Saito G, Lorenc M, Local response to light excitation in the charge-ordered phase of (EDO−TTF)2SbF6, Phys. Rev. B 92, 024304 (2015). [NASA ADS] [CrossRef] [Google Scholar]
  7. Wu AQ, Xu X, Coupling of ultrafast laser energy to coherent phonons in bismuth, Appl.Phys. Lett. 90, 251111 (2007) [NASA ADS] [CrossRef] [Google Scholar]
  8. Roeser CAD, Kandyla M, Mendioroz A, Mazur E, Optical control of coherent lattice vibrations in tellurium, Phys. Rev. B 70, 212302 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  9. Ramos-Alvarez A, Fleischmann N, Vidas L, Fernandez-Rodriguez A, Palau A, Wall S, Probing the lattice anharmonicity of superconducting YBa2Cu3O7−δ via phonon harmonics, Phys. Rev. B 100, 184302 (2019). [CrossRef] [Google Scholar]
  10. Richter S, Rebarz M, Herrfurth O, Espinoza S, Schmidt-Grund R, Andreasson J, Broadband femtosecond spectroscopic ellipsometry, Rev. Scientific Instrum. 92, 033104 (2021). [NASA ADS] [CrossRef] [Google Scholar]
  11. Roeser CAD, Kim AM-T, Callan JP, Huang L, Glezer EN, Siegal Y, Mazur E, Femtosecond time-resolved dielectric function measurements by dual-angle reflectometry, Rev. Scientific Instrum. 74, 3413–3422 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  12. Boschetto D, Garl T, Rousse A, Ultrafast dielectric function dynamics in bismuth, J. Modern Opt. 57 (11), 953–958 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  13. Fritz DM, Reis DA, Adams B, Akre RA, Arthur J, Blome C, Bucksbaum PH, Cavalieri AL, Engemann S, Fahy S, Falcone RW, Fuoss PH, Gaffney KJ, George MJ, Hajdu J, Hertlein MP, Hillyard PB, von Hoegen MH, Kammler M, Kaspar J, Kienberger R, Krejcik P, Lee SH, Lindenberg AM, McFarland B, Meyer D, Montagne T, Murray ED, Nelson AJ, Nicoul M, Pahl R, Rudati J, Schlarb H, Siddons DP, Sokolowski-Tinten K, Tschentscher T, von der Linde D, Hastings JB, Ultrafast bond softening in bismuth: Mapping a solid’s interatomic potential with X-rays, Science 315 (5812), 633–636 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  14. Papalazarou E, Boschetto D, Gautier J, Garl T, Valentin C, Rey G, Zeitoun P, Rousse A, Balcou P, Marsi M, Probing coherently excited optical phonons by extreme ultraviolet radiation with femtosecond time resolution, Appl. Phys. Lett. 93, 041114 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  15. Thiemann F, Sciaini G, Kassen A, Lott TS, Horn-von Hoegen M, Disentangling the electronic and lattice contributions to the dielectric response of photoexcited bismuth, Phys. Rev. B 109, L041105 (2024). [NASA ADS] [CrossRef] [Google Scholar]
  16. Born M, Wolf E. Principles of optics (Pergamon Press, Oxford, UK, 1980). [Google Scholar]
  17. Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical Recipes in Fortran 77, 2nd ed. (Cambridge University Press, Cambridge, UK, 1992). [Google Scholar]
  18. Boschetto D, Gamaly EG, Rode AV, Luther-Davies B, Glijer D, Garl T, Albert O, Rousse A, Etchepare J, Small atomic displacements recorded in bismuth by the optical reflectivity of femtosecond laser-pulse excitations, Phys. Rev. Lett. 100, 027404 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  19. Garl T, Gamaly EG, Boschetto D, Rode AV, Luther-Davies B, Rousse A, Birth and decay of coherent optical phonons in femtosecond-laser-excited bismuth, Phys. Rev. B 78, 134302 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  20. Madelung O, Schulz M, Weiss H (eds.) Numerical Data and Functional Relationships in Science and Technology, vol. 17 of Landolt-Börnstein, New Series, Group III (Springer-Verlag, Berlin, 1983). [Google Scholar]
  21. Madelung O, Rössler U, Schulz M. Numerical data and functional relationships in science and technology, vol. 41C of Landolt-Bornstein, New Series, Group III (Springer-Verlag, Berlin, 2006) [Google Scholar]
  22. Faure J, Mauchain J, Papalazarou E, Marsi M, Boschetto D, Timrov I, Vast N, Ohtsubo Y, Arnaud B, Perfetti L, Direct observation of electron thermalization and electron-phonon coupling in photoexcited bismuth, Phys. Rev. B 88, 075120 (2013). [NASA ADS] [CrossRef] [Google Scholar]
  23. Comins NR The optical properties of liquid metals, Phil. Mag. A J. Theo. Exp. Appl. Phys. 25 (4), 817–831 (1972). [Google Scholar]
  24. Jnawali G, Boschetto D, Malard LM, Heinz TF, Sciaini G, Thiemann F, Payer T, Kremeyer L, Meyer zu Heringdorf F.-J., Horn-von Hoegen M, Hot carrier transport limits the displacive excitation of coherent phonons in bismuth, Appl. Phys. Lett. 119, 091601 (2021). [NASA ADS] [CrossRef] [Google Scholar]
  25. Spenato D, Dubreuil M, Morineau D, Giamarchi P, Dekadkevi D, Jay J-P, Fessant A, Rivet S, Grand YL, Ta/NiO subwavelength bilayer for wide gamut, strong interference structural color, J. Phys. Commun. 6, 035002 (2022). [NASA ADS] [CrossRef] [Google Scholar]
  26. Kasami M, Mishina T, Nakahara J, Femtosecond pump and probe spectroscopy in bi under high pressure, Physica Status Solidi: B 241(14), 3113–3116 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  27. Lopez AA, Electron-hole recombination in bismuth, Phys. Rev. 175, 823–840 (1968). [NASA ADS] [CrossRef] [Google Scholar]
  28. Sciaini G, Harb M, Kruglik SG, Payer T, Hebeisen CT, Heringdorf F-JMZ, Yamaguchi M, Hoegen MH-V, Ernstorfer R, Miller RJD, Electronic acceleration of atomic motions and disordering in bismuth, Nature 458(7234), 56–59 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  29. Gonzalez Vallejo I, Gallé G, Arnaud B, Scott SA, Lagally MG, Boschetto D, Coulon P-E, Rizza G, Houdellier F, Le Bolloćh D, Faure J, Observation of large multiple scattering effects in ultrafast electron diffraction on monocrystalline silicon, Phys. Rev. B 97, 054302 (2018). [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.