Open Access
Issue
J. Eur. Opt. Society-Rapid Publ.
Volume 20, Number 2, 2024
Article Number 43
Number of page(s) 10
DOI https://doi.org/10.1051/jeos/2024044
Published online 13 December 2024
  1. Han Y, Jin Y, Kong F, Wang Y, Zhang Y, Cao H, Cui Y, Shao J, TM polarization preferentially implemented in the next generation of high-intensity laser systems based on multilayer dielectric gratings, Appl. Phys. Lett. 120, 113502 (2022). https://doi.org/10.1063/5.0085314. [NASA ADS] [CrossRef] [Google Scholar]
  2. Wirth C, Schmidt O, Tsybin I, Schreiber T, Eberhardt R, Limpert J, Tünnermann A, Ludewigt K, Gowin M, ten Have E, Jung M, High average power spectral beam combining of four fiber amplifiers to 8.2 kW, Opt. Lett. 36, 3118 (2011). https://doi.org/10.1364/OL.36.003118. [CrossRef] [Google Scholar]
  3. Li L, Liu Q, Chen J, Wang L, Jin Y, Yang Y, Shao J, Polarization-independent broadband dielectric bilayer gratings for spectral beam combining system, Opt. Commun. 385, 97 (2017). https://doi.org/10.1016/j.optcom.2016.10.048. [CrossRef] [Google Scholar]
  4. Cao H, Wu J, Yu J, Ma J, High-efficiency polarization-independent wideband multilayer dielectric reflective bullet-alike cross-section fused-silica beam combining grating, Appl. Opt. 57, 900 (2018). https://doi.org/10.1364/AO.57.000900. [NASA ADS] [CrossRef] [Google Scholar]
  5. Li L, Internal mechanism of perfect-reflector-backed dielectric gratings to achieve 100% diffraction efficiency, J. Opt. Soc. Am. A 41, 252 (2024). https://doi.org/10.1364/JOSAA.511422. [NASA ADS] [CrossRef] [Google Scholar]
  6. Dong S, Zhang Z, Xie L, Zhu J, Liang H, Wei Z, Shi Y, Tikhonravov AV, Wang Z, Zhou L, Cheng X, Broadband depolarized perfect Littrow diffraction with multilayer freeform metagratings, Optica 10, 585 (2023). https://doi.org/10.1364/OPTICA.486332. [CrossRef] [Google Scholar]
  7. Maystre D, Cadilhac M, Chandezon J, Gratings: a phenomenological approach and its applications, perfect blazing in a non-zero deviation mounting, Opt. Acta 28, 457 (1981). https://doi.org/10.1080/713820583. [CrossRef] [Google Scholar]
  8. Moharam MG, Gaylord TK, Diffraction analysis of dielectric surface-relief gratings, J. Opt. Soc. Am. 72, 1385 (1982). https://doi.org/10.1364/JOSA.72.001385. [NASA ADS] [CrossRef] [Google Scholar]
  9. Wei K, Theoretical analysis of high-efficiency polarization-independent multilayer dielectric reflection gratings, PhD Thesis, Tsinghua University, 2023. [Google Scholar]
  10. KAPPA is a grating simulation code written by the second author of the present paper based on L. Li: Chap. 13: Fourier modal method, in: Gratings: Theory and Numeric Applications, Popov E. (Ed.), 2nd revisited edn. (Institut Fresnel, 2014). [Google Scholar]
  11. TFCalc–Thin film design software for Windows (HULINKS Inc., Tokyo, Japan, 2022). Available at https://www.hulinks.co.jp/en/tfcalc-e. [Google Scholar]
  12. MATLAB File Exchange – Largest inscribed rectangle, square or circle (Seibold P, 2020). Available at https://ww2.mathworks.cn/matlabcentral/fileexchange/71491-largest-inscribed-rectangle-square-or-circle. [Google Scholar]
  13. Li L, Propagating-order scattering matrix of conically mounted and crossed gratings, J. Opt. Soc. Am. A 38, 426 (2021). https://doi.org/10.1364/JOSAA.417769. [NASA ADS] [CrossRef] [Google Scholar]
  14. Li L, Using symmetries of grating groove profiles to reduce computation cost of the C method, J. Opt. Soc. Am. A 24, 1085 (2007). https://doi.org/10.1364/JOSAA.24.001085. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.