Open Access
Issue |
J. Eur. Opt. Society-Rapid Publ.
Volume 20, Number 2, 2024
|
|
---|---|---|
Article Number | 35 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/jeos/2024036 | |
Published online | 11 October 2024 |
- De M., Gangopadhyay T.K., Singh V.K. (2019) Prospects of photonic crystal fiber as physical sensor: an overview, Sensors 19, 3, 464. [NASA ADS] [CrossRef] [Google Scholar]
- Benabid F., Roberts P.J. (2011) Linear and nonlinear optical properties of hollow core photonic crystal fiber, J. Mod. Opt. 58, 2, 87–124. [NASA ADS] [CrossRef] [Google Scholar]
- Monfared Y.E., Javan A.M., Kashani A.M. (2013) Confinement loss in hexagonal lattice photonic crystal fibers, Optik 124, 24, 7049–7052. [NASA ADS] [CrossRef] [Google Scholar]
- Hossain M.S., Sen S., Hossain M.M. (2021) Performance analysis of octagonal photonic crystal fiber (O-PCF) for various communication applications, Phys. Scr. 96, 5, 055506. [NASA ADS] [CrossRef] [Google Scholar]
- Kumar A., Verma P., Jindal P. (2021) Decagonal solid core PCF based refractive index sensor for blood cells detection in terahertz regime, Opt. Quantum Electron. 53, 1–13. [NASA ADS] [CrossRef] [Google Scholar]
- Olyaee S., Taghipour F. (2011) Design of new square-lattice photonic crystal fibers for optical communication applications, Int. J. Physical Sci. 6, 18, 4405–4411. [Google Scholar]
- Maji P.S., Chaudhuri P.R. (2016) Studies of the modal properties of circularly photonic crystal fiber (C-PCF) for high power applications, Photon. Nanostruct. Fundam. Appl. 19, 12–23. [NASA ADS] [CrossRef] [Google Scholar]
- Liao J., Huang T., Xiong Z., Kuang F., Xie Y. (2017) Design and analysis of an ultrahigh birefringent nonlinear spiral photonic crystal fiber with large negative flattened dispersion, Optik 135, 42–49. [NASA ADS] [CrossRef] [Google Scholar]
- Halder A., Tanshen M.R., Hossain M.A., Akter M.S., Sikdar M.A. (2024) Tailored dispersion and nonlinear effects in flint glass honeycomb PCF for optical communication, J. Opt. Photon. Res. 1, 1, 43–49. [Google Scholar]
- Halder A., Anower M.S. (2019) Relative dispersion slope matched highly birefringent and highly nonlinear dispersion compensating hybrid photonic crystal fiber, Photon. Nanostruct. Fundament. Appl. 35, 100704. [NASA ADS] [CrossRef] [Google Scholar]
- Halder A. (2020) Slope matched highly birefringent hybrid dispersion compensating fiber over telecommunication bands with low confinement loss, J. Opt. 49, 2, 187–195. [NASA ADS] [CrossRef] [Google Scholar]
- Halder A. (2023) Design of a slope matched single mode highly birefringent dispersion compensating hybrid photonic crystal fiber, GRIN Verlag. [Google Scholar]
- Kumar G., Gupta R.P. (2013) Dispersion modeling of micro structure optical fibers for telecommunication deployment, Sci. Technol. Manage. 17, 26, 10–18. [Google Scholar]
- Singh S., Chaudhary B., Upadhyay A., Sharma D., Ayyanar N., Taya S.A. (2023) A review on various sensing prospects of SPR based photonic crystal fibers, Photon. Nanostruct.-Fundament. Appl. 54, 101119. [NASA ADS] [CrossRef] [Google Scholar]
- Lu S., Li W., Guo H., Lu M. (2011) Analysis of birefringent and dispersive properties of photonic crystal fibers, Appl. Opt. 50, 30, 5798–5802. [NASA ADS] [CrossRef] [Google Scholar]
- Halder A. (2016) Highly birefringent photonic crystal fiber for dispersion compensation over E+ S+ C+ L communication bands, in: 2016 5th International Conference on Informatics, Electronics and Vision (ICIEV), May, IEEE, pp. 1099–1103. [Google Scholar]
- Islam S.R., Islam M.M., Rahman M.N.A., Mia M.M.A., Hakim M.S., Biswas S.K. (2017) Design of hexagonal photonic crystal fiber with ultra-high birefringent and large negative dispersion coefficient for the application of broadband fiber, Int. J. Eng. Sci. Tech. 2, 1, 9–16. [Google Scholar]
- Amin M.N., Faisal M., Rahman M.M. (2016, November.) Ultrahigh birefringent index guiding photonic crystal fibers, in: 2016 IEEE Region 10 Conference (TENCON), IEEE, pp. 2722–2725. [Google Scholar]
- Liu M., Yuan H., Shum P., Shao C., Han H., Chu L. (2018) Simultaneous achievement of highly birefringent and nonlinear photonic crystal fibers with an elliptical tellurite core, Appl. Opt. 57, 22, 6383–6387. [NASA ADS] [CrossRef] [Google Scholar]
- Chaudhary V.S., Kumar D., Sharma S. (2020) Design of high birefringence with two zero dispersion wavelength and highly nonlinear hybrid photonic crystal fiber, in: Janyani V., Singh G., Tiwari M., d’Alessandro A. (eds), Optical and wireless technologies. Lecture notes in electrical engineering, vol. 546, Springer, Singapore, pp. 301–306. [CrossRef] [Google Scholar]
- Halder A. (2020) Slope matched highly birefringent hybrid dispersion compensating fiber over telecommunication bands with low confinement loss, J.Opt. 49, 2, 187–195. [NASA ADS] [CrossRef] [Google Scholar]
- Liang R., Zhao H., Zhao L., Li X. (2020) Design and analysis of high birefringence photonic crystal fiber with sandwich structure, J. Phys. Conf. Ser. 1650, 2 022021, [CrossRef] [Google Scholar]
- Benlacheheb M., Cherbi L., Merabet A.N. (2021) Highly birefringent fiber design based on polymer photonic crystal fiber with ultralow confinement loss for sensing application, Micro-Struct. Special. Opt. Fibres VII, 11773, 148–155. [Google Scholar]
- Wang J. (2021) Numerical investigation of high birefringence and nonlinearity tellurite glass photonic crystal fiber with microstructured core, Appl. Opt. 60, 15, 4455–4461. [NASA ADS] [CrossRef] [Google Scholar]
- Du Z., Wei F., He J. (2023) High birefringence and nonlinearity photonic crystal fiber, J. Opt. 52, 2, 665–671. [NASA ADS] [CrossRef] [Google Scholar]
- Priyadharshini C., Devika R., Selvendran S., Raja A.S. (2023) Investigating the cross core octagonal photonic crystal fiber with high birefringence: A design and analysis study, Mater. Today: Proc. https://doi.org/10.1016/j.matpr.2023.03.063. [Google Scholar]
- Amit H., Emon W., Anower MdS, Tanshen MdR, Forkan Md, Shajib MdSU (2023) Design and numerical analysis of ultra-high negative dispersion, highly birefringent nonlinear single mode core-tune photonic crystal fiber (CT-PCF) over communication bands, Opt. Photon. J. 13, 10, 227–242. [NASA ADS] [CrossRef] [Google Scholar]
- Liu Z., Wen J., Zhou Z., Dong Y., Yang T. (2023) A highly birefringent photonic crystal fiber based on a central trielliptic structure: FEM analysis, Physica Scripta 98, 11, 115607. [NASA ADS] [CrossRef] [Google Scholar]
- Agbemabiese P.A., Akowuah E.K. (2024) Numerical analysis of photonic crystal fibre with high birefringence and high nonlinearity, J. Opt. Commun. 44, s1, s543–s550. [NASA ADS] [CrossRef] [Google Scholar]
- Monk P. (2003) Finite element methods for Maxwell’s equations, Oxford University Press. [CrossRef] [Google Scholar]
- Ghosh G. (1997) Sellmeier coefficients and dispersion of thermo-optic coefficients for some optical glasses, Appl. Opt. 36, 7, 1540–1546. [NASA ADS] [CrossRef] [Google Scholar]
- Shao-Wen G., Jun-Cheng C., Song-Lin F. (2003) Numerical analysis of multilayer waveguides using effective refractive index method, Commun. Theoret. Phys. 39, 3, 327. [NASA ADS] [CrossRef] [Google Scholar]
- Ding R., Hou S., Wang D., Lei J., Li X., Ma Y. (2017) Novel design of a diamond-core photonic crystal fiber for terahertz wave transmission, in: 2017 Progress in Electromagnetics Research Symposium-Spring (PIERS), May, IEEE, pp. 1148–1151. [Google Scholar]
- Wu D., Yu F., Liu Y., Liao M. (2019) Dependence of waveguide properties of anti-resonant hollow-core fiber on refractive index of cladding material, J. Lightwave Technol. 37, 21, 5593–5699. [NASA ADS] [CrossRef] [Google Scholar]
- Zairmi Y., Veriyanti V., Candra W., Syahputra R.F., Soerbakti Y., Asyana V., Irawan D., Hairi H., Hussein N.A., Anita S. (2020) Birefringence and polarization mode dispersion phenomena of commercial optical fiber in telecommunication networks, J. Phys. Conf. Ser., 1655, 1, 012160, IOP Publishing. [CrossRef] [Google Scholar]
- Mortensen N.A. (2002) Effective area of photonic crystal fibers, Opt. Exp. 10, 7, 341–348. [CrossRef] [Google Scholar]
- Yu Y., Lian Y., Hu Q., Xie L., Ding J., Wang Y., Lu Z. (2022) Design of PCF supporting 86 OAM modes with high mode quality and low nonlinear coefficient, Photonics, 9, 4, 266, MDPI. [NASA ADS] [CrossRef] [Google Scholar]
- Halder A., Tanshen M.R., Akter M.S., Hossain M.A. (2023) Design of highly birefringence and nonlinear Modified Honeycomb Lattice Photonic Crystal Fiber (MHL-PCF) for broadband dispersion compensation in E+ S+ C+ L communication bands, Eng. Proc. 56, 1, 19. [Google Scholar]
- Halder A., Anower M.S., Emon W., Tanshen M.R., Shajib M.S.U. (2023) Design and finite element analysis of a single-mode modified circular microstructured optical fiber for high negative dispersion and high nonlinearity across E to L communication bands, IN: 2023 26th International Conference on Computer and Information Technology (ICCIT), December. IEEE, pp. 1–5. [Google Scholar]
- Luke S., Sudheer S.K., Pillai V.M. (2015) Modeling and analysis of a highly birefringent chalcogenide photonic crystal fiber, Optik 126, 23, 3529–3532. [NASA ADS] [CrossRef] [Google Scholar]
- Reeves W.H., Knight J.C., Russell P.S.J., Roberts P.J. (2002) Demonstration of ultra-flattened dispersion in photonic crystal fibers, Opt. Exp. 10, 14, 609–613. [NASA ADS] [CrossRef] [Google Scholar]
- Amouzad Mahdiraji G., Chow D.M., Sandoghchi S.R., Amirkhan F., Dermosesian E., Yeo K.S., Kakaei Z., Ghomeishi M., Poh S.Y., Yu Gang S., Mahamd Adikan F.R. (2014) Challenges and solutions in fabrication of silica-based photonic crystal fibers: an experimental study, Fiber Integrated Opt. 33, 1–2, 85–104. [NASA ADS] [CrossRef] [Google Scholar]
- Yajima T., Yamamoto J., Ishii F., Hirooka T., Yoshida M., Nakazawa M. (2013) Low-loss photonic crystal fiber fabricated by a slurry casting method, Opt. Exp. 21, 25, 30500–30506. [NASA ADS] [CrossRef] [Google Scholar]
- Kim J.C., Kim H.K., Paek U.C., Lee B.H., Eom J.B. (2003) The fabrication of a photonic crystal fiber and measurement of its properties, J. Opt. Soc. Korea 7, 2, 79–83. [CrossRef] [Google Scholar]
- Zhang P., Zhang J., Yang P., Dai S., Wang X., Zhang W. (2015) Fabrication of chalcogenide glass photonic crystal fibers with mechanical drilling, Optic. Fiber Technol. 26, 176–179. [NASA ADS] [CrossRef] [Google Scholar]
- Li W., Zhou Q., Zhang L., Wang S., Wang M., Yu C., Feng S., Chen D., Hu L. (2013) Watt-level Yb-doped silica glass fiber laser with a core made by sol-gel method, Chin. Opt. Lett. 11, 9. [Google Scholar]
- Pravesh R., Kumar D., Pandey B.P., Chaudhary V.S., Singh D., Kumar S. (2023) Advanced refractive index sensor based on photonic crystal fiber with elliptically split cores, Opt. Quantum Electron. 55, 13, 1205. [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.