Open Access
Issue
J. Eur. Opt. Society-Rapid Publ.
Volume 20, Number 2, 2024
Article Number 36
Number of page(s) 8
DOI https://doi.org/10.1051/jeos/2024027
Published online 23 October 2024
  1. Puttnam BJ, Rademacher G, Luís RS, Space-division multiplexing for optical fiber communications, Optica 8, 1186–1203 (2021). [NASA ADS] [CrossRef] [Google Scholar]
  2. Zhang J, Lin Z, Liu J, Liu J, Lin Z, Mo S, Lin S, Shen L, Zhang L, Chen Y, Lan X, SDM transmission of orbital angular momentum mode channels over a multi-ring-core fiber, Nanophotonics 11, 873–84 (2022). [NASA ADS] [CrossRef] [Google Scholar]
  3. Deng D, Li Y, Zhao H, Han Y, Ye J, Qu S, High-capacity spatial-division multiplexing with orbital angular momentum based on multi-ring fiber, J. Opt. 21, 5, 055601 (2019). [NASA ADS] [CrossRef] [Google Scholar]
  4. Li X, Li Y, Zeng X, Han Y, Perfect optical vortex array for optical communication based on orbital angular momentum shift keying, J. Opt. 20, 12, 125604 (2018). [NASA ADS] [CrossRef] [Google Scholar]
  5. Ostrovsky AS, Rickenstorff-Parrao C, Arrizón V, Generation of the “perfect” optical vortex using a liquid-crystal spatial light modulator, Opt. Lett. 38, 534–536 (2013). [NASA ADS] [CrossRef] [Google Scholar]
  6. Chen M, Michael M, Arita Y, Wright EM, Dholakia K, Dynamics of microparticles trapped in a perfect vortex beam, Opt. Lett. 38, 22, 4919–4922 (2013). [NASA ADS] [CrossRef] [Google Scholar]
  7. Li GF, Bai N, Zhao NB, Xia C, Space-division multiplexing: the next frontier in optical communication, Adv. Opt. Photon. 6, 413–487 (2014). [NASA ADS] [CrossRef] [Google Scholar]
  8. Tian Q, Zhu L, Wang Y, Zhang Q, Liu B, Xin X, The propagation properties of a longitudinal orbital angular momentum multiplexing system in atmospheric turbulence, IEEE Photonics J. 10, 1, 1–16 (2017). [CrossRef] [Google Scholar]
  9. Li Y, Lin Y, Yixin Z, Influence of anisotropic turbulence on the orbital angular momentum modes of Hermite-Gaussian vortex beam in the ocean, Opt. Express 25, 12203–12215 (2017). [NASA ADS] [CrossRef] [Google Scholar]
  10. Willner AE, Ren Y, Xie G, Yan Y, Li L, Zhao Z, Wang J, Tur M, Molisch AF, Ashrafi S, Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing, Philos. Trans. A Math. Phys. Eng. Sci. 375, 2087, 20150439 (2017). [NASA ADS] [Google Scholar]
  11. Simpson NB, Allen L, Padgett MJ, Optical tweezers and optical spanners with Laguerre-Gaussian modes, J. Mod. Opt. 43, 12, 2485–2491 (1996). [NASA ADS] [CrossRef] [Google Scholar]
  12. Antonio-Lopez JE, Alvarado-Zacarias JC, Wittek S, Cruz-Delgado D, Martinez-Mercado J, SDM Fibers and Devices: Design, Manufacturing, and Applications, in Optical Fiber Communication Conference (OFC) 2021, edited by P Dong, J Kani, C Xie, R Casellas, C Cole, M Li (Optica Publishing Group, 2021), Paper W7B.5. [CrossRef] [Google Scholar]
  13. Murshid S, Alanzi S, Enaya R, Chakravarty A, Parhar G, Lovell G, Chowdhury B, Hybrid optical fiber architecture combining orbital angular momentum of photons and spatial domain multiplexing with wavelength division multiplexing for higher data rates, in Frontiers in Optics (Optica Publishing Group, 2014), Paper FTh3B-3. [Google Scholar]
  14. Savchenkov AA, Matsko AB, Grudinin I, Savchenkova EA, Strekalov D, Maleki L, Optical vortices with large orbital momentum: generation and interference, Opt. Express 14, 7, 2888–2897 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  15. Murshid S, Alanzi S, Chowdhury B, Wavelength independency of orbital angular momentum (OAM) channels in spatially multiplexed systems, in Laser Science (Optica Publishing Group, 2015), Paper JW2A-33. [Google Scholar]
  16. Murshid S, Lovell G, Chowdhury B, Hridoy A, Parhar G, Chakravarty A, Alanzi S, Analysis of spatial domain multiplexing/space division multiplexing (SDM) based hybrid architectures operating in tandem with wavelength division multiplexing, Proc. SPIE 9202, 295–301 (2014). [NASA ADS] [Google Scholar]
  17. Murshid SH, Biswas R, Chakravarty A, CAD model for co-propagating spatially multiplexed channels of same wavelength over standard multimode fibers, Proc. SPIE 7339, 73390O (2009). [NASA ADS] [CrossRef] [Google Scholar]
  18. Liu Y, Sogaard Rishoj L, Galili M, Ding Y, Oxenlowe LK, Morioka T, Data transmission using Orbital Angular Momentum mode multiplexing and wavelength division multiplexing with a silicon photonic integrated MUX chip, in 2021 European Conference on Optical Communication (ECOC) (IEEE, 2021), pp. 1–4. [Google Scholar]
  19. Scaffardi M, Malik MN, Zhang N, Rydlichowski P, Toccafondo V, Klitis C, Lavery MP, Zhu J, Cai X, Yu S, Preve G, 10 OAM× 16 wavelengths two-layer switch based on an integrated mode multiplexer for 19.2 Tb/s data traffic, J. Light. Technol. 39, 10, 3217–24 (2021). [NASA ADS] [CrossRef] [Google Scholar]
  20. Murshid SH, Muralikrishnan HP, Kozaitis SP, Orbital angular momentum in four channel spatial domain multiplexing system for multi-terabit persecond communication architectures, Proc. SPIE 8397, 839703 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  21. Fang Y, Yu J, Chi N, Zhang J, Xiao J, A novel PON architecture based on OAM multiplexing for efficient bandwidth utilization, IEEE Photonics J. 7, 1, 1–6 (2015). [NASA ADS] [Google Scholar]
  22. Wang J, Zhang H, Yang J, Wang X, Chen Z, Zhang X, Xi L, Zhang W, Tang X, Hybrid cladding ring-core fiber with weakly spin-orbit coupling for OAM mode division multiplexing transmission, in 2021 19th International Conference on Optical Communications and Networks (ICOCN) (IEEE, 2021), pp. 1–3. [Google Scholar]
  23. Murshid S, Grossman B, Narakorn P, Spatial domain multiplexing: A new dimension in fiber optic multiplexing, Opt. Laser Technol. 40, 1030–1036 (2008). [CrossRef] [Google Scholar]
  24. Willner AE, OAM light for communications, Opt. Photonics News 32, 34–41 (2021). [NASA ADS] [CrossRef] [Google Scholar]
  25. Singh M, Atieh A, Grover A, Barukab O, Performance analysis of 40 Gb/s free space optics transmission based on orbital angular momentum multiplexed beams, Alex. Eng. J. 61, 5203–5212 (2022). [CrossRef] [Google Scholar]
  26. Djordjevic IB, Coded orbital angular momentum (OAM) modulation based heterogeneous optical networking, in 13th International Conference on Transparent Optical Networks (ICTON), 2011 (IEEE, 2011), pp. 1–5. [Google Scholar]
  27. Murshid S, Alanzi S, Hridoy A, Lovell G, Parhar G, Chakravarty A, Chowdhury B, An order of magnitude improvement in optical fiber bandwidth using spatial domain multiplexing/space division multiplexing (SDM) in conjunction with orbital angular momentum (OAM), Proc. SPIE 9202, 92020U (2014). [NASA ADS] [CrossRef] [Google Scholar]
  28. Rjeb A, Fathallah H, Machhout M, OAM modes in optical fibers for next generation space division multiplexing (SDM) systems, in Fiber optics technology and applications, edited by G Huerta-Cuellar (IntechOpen, 2021). https://doi.org/10.5772/intechopen.97773. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.