Open Access
Issue |
J. Eur. Opt. Society-Rapid Publ.
Volume 20, Number 1, 2024
|
|
---|---|---|
Article Number | 1 | |
Number of page(s) | 6 | |
DOI | https://doi.org/10.1051/jeos/2023047 | |
Published online | 23 January 2024 |
- LaRosae M.N., Samuel R.S., Clizer D.A. (2022) 116 effect of zinc oxide and organic zinc on weanling pig performance, J. Animal Sci. 100, Suppl 2, 52. [CrossRef] [Google Scholar]
- National Research Council, Division on Earth and Life Studies, Board on Agriculture and Natural Resources, Committee on Nutrient Requirements of Swine (2012) Nutrient requirements of swine, National Academies Press. [Google Scholar]
- Bonetti A., Tugnoli B., Piva A., Grilli E. (2021) Towards zero zinc oxide: feeding strategies to manage post-weaning diarrhea in piglets, Animals 11, 3, 642. [CrossRef] [Google Scholar]
- Hansen S.V., Nørgaard J.V., Woyengo T., Nielsen T.S. (2023) The relationship between zinc intake, dietary content, and fecal excretion in pigs, Livest. Sci. 271, 105228. [CrossRef] [Google Scholar]
- Tella M., Legros S., Monteiro A.N.T.R., Forouzandeh A., Penen F., Durosoy S., Doelsch E. (2023) Unexpected Cu and Zn speciation patterns in the broiler feed-animal-excreta system revealed by XAS spectroscopy, Chemosphere 340, 139684. [NASA ADS] [CrossRef] [Google Scholar]
- Monteiro S.C., Lofts S., Boxall A.B. (2010) Pre-assessment of environmental impact of zinc and copper used in animal nutrition, EFSA Support. Publ. 7, 9, 74E. [Google Scholar]
- Poole K. (2017) At the nexus of antibiotics and metals: the impact of Cu and Zn on antibiotic activity and resistance, Trends Microbiol. 25, 10, 820–832. [CrossRef] [Google Scholar]
- Announcement No. 2625 (2018) Ministry of Agriculture of the People’s Republic of China, Hunan Feed 01, 17. [Google Scholar]
- Lusha S., Zhicun G., Hunjan C., Shuning Y., Yun G. (2022) Evaluation of uncertainty for determination of zinc content in feed by atomic absorption spectrometry, China Metrol. 05, 99–101. [Google Scholar]
- Ya M. (2019) Spectrophotometric determination of zinc in animal feed, Guangdong Chem. Indus. 46, 9, 223–224. [Google Scholar]
- Jianli H., Huang L., Lingfeng C. (2019) Determination of Na, Mg, Cr, Mn, Fe, Cu, Zn, As, Se, Cd and Pb in animal feed by ICP-MS, Feed Indus. 40, 18, 54–58. [Google Scholar]
- Darshitsinh P., Rohit S.K.B.P. (2023) Laser induced breakdown spectroscopy: A robust technique for the detection of trace metals in water, Mater. Today Proc. 77, P1. [Google Scholar]
- Cui M., Guo H., Chi Y., Tan L., Yao C., Zhang D., Deguchi Y. (2022) Quantitative analysis of trace carbon in steel samples using collinear long-short double-pulse laser-induced breakdown spectroscopy, Spectrochim. Acta B 191, 106398. [NASA ADS] [CrossRef] [Google Scholar]
- Wang Q., Chen A., Chen Y., Jiang Y., Liab S., Jin M. (2021) Highly sensitive analysis of trace Pb in aqueous solution using electro-deposition and spark-discharge assisted laser-induced breakdown spectroscopy, J. Anal. At. Spectrom. 36, 1889–1894. [CrossRef] [Google Scholar]
- Awan R.A., Siraj K., Haq S.U., Abbas Q., Rahim M.S.A., Younas Q., Fareed S., Ahsen R., Ahmad Z., Irshad M., Latif A. (2023) Laser induced breakdown spectroscopy of aluminum incorporated with metallic nanoparticles, Opt. Quantum Electron. 55, 1, 73. [CrossRef] [Google Scholar]
- Ikeda Y., Soriano J.K., Ohba H., Wakaida I. (2023) Analysis of gadolinium oxide using microwave-enhanced fiber-coupled micro-laser-induced breakdown spectroscopy, Sci. Rep. 13, 1, 4828. [NASA ADS] [CrossRef] [Google Scholar]
- Hussain A., Iqbal S.T., Shahbaz R.M., Zafar M., Arshad A.A., Aslam K., Mukhtar M. (2022) Varying magnetic field strength as an effective approach to boost up the plasma signal in laser-induced breakdown spectroscopy, Heliyon 8, 9. [Google Scholar]
- Fu Y., Hou Z., Wang Z. (2016) Physical insights of cavity confinement enhancing effect in laser-induced breakdown spectroscopy, Opt. Exp. 24, 3, 3055–3066. [NASA ADS] [CrossRef] [Google Scholar]
- Xue Y., Anmin C., Suyu L., Jiang Y., Mingxing J. (2020) Effect of parallel plate constraint on CN molecular Spectra in laser-induced PMMA plasma, Chin. J. Lasers 47, 8, 271–277. [Google Scholar]
- Chen J.Z., Ma R.L., Wang J., Li X., Su H.X. (2014) Study of self-absorption effect on laser-induced metal plasma, Spectrosc. Spec. Anal. 34, 9, 2337–2341. [Google Scholar]
- Wang Y., Jia Y., Gao L., Su Q., Liu W., Zhou T., Xiao Q. (2023) The effects of cavity diameter and material type of spatial confinement on intensity of laser-induced breakdown spectroscopy, Phys. Scr. 98, 1, 015610. [NASA ADS] [CrossRef] [Google Scholar]
- Xu B., Liu Y., Lei B., Wang J., Zhang W., Wang Y., Zhao W., Duan Y., Tang J. (2022) Comparative study on the copper plasma confined with upward and downward conical cavities in laser-induced breakdown spectroscopy, Spectrochim. Acta B 197, 106528. [NASA ADS] [CrossRef] [Google Scholar]
- Meng D., Zhao N., Ma M., Wang Y., Hu L., Yu Y., Fang L., Liu W. (2015) Heavy metal detection in soils by laser induced breakdown spectroscopy using hemispherical spatial confinement, Plasma Sci. Technol. 17, 8, 632. [NASA ADS] [CrossRef] [Google Scholar]
- Li A., Guo S., Wazir N., Chai K., Liang L., Zhang M., Hao Y., Nan P., Liu R. (2017) Accuracy enhancement of laser induced breakdown spectra using permittivity and size optimized plasma confinement rings, Opt. Exp. 25, 22, 27559–27569. [NASA ADS] [CrossRef] [Google Scholar]
- Meng Y., Li H., Wang Y., Lv H., Wang C., Wang F., Fang L. (2023) Influence of planar mirror confinement and temperature control upon the elemental analysis of soil by laser-induced breakdown spectroscopy, Anal. Lett. 56, 17. [Google Scholar]
- Ren L., Hao X.-J., Yang Y.-W., Sun Y.-K. (2020) Time evolution characteristics of laser-induced breakdown spectroscopy under combined action of cavity confinement and nanoparticles, Spectrosc. Spect. Anal. 40, 4, 1012–1017. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.