Open Access
Issue
J. Eur. Opt. Society-Rapid Publ.
Volume 20, Number 1, 2024
Article Number 2
Number of page(s) 11
DOI https://doi.org/10.1051/jeos/2023043
Published online 06 February 2024
  1. Rolland J.P., Davies M.A., Suleski T.J., Evans C., Bauer A., Lambropoulos J.C., Falaggis K. (2021) Freeform optics for imaging, Optica 8, 2, 161–176. [NASA ADS] [CrossRef] [Google Scholar]
  2. Schiesser E.M., Bauer A., Rolland J.P. (2019) Effect of freeform surfaces on the volume and performance of unobscured three mirror imagers in comparison with off-axis rotationally symmetric polynomials, Opt. Express 27, 15, 21750–21765. https://doi.org/10.1364/OE.27.021750. [NASA ADS] [CrossRef] [Google Scholar]
  3. Forbes G.W. (2012) Characterizing the shape of freeform optics, Opt. Express 20, 3, 2483–2499. https://doi.org/10.1364/OE.20.002483. [NASA ADS] [CrossRef] [Google Scholar]
  4. Chrisp M.P. (2014) New freeform NURBS imaging design code, in: International Optical Design Conference, Optical Society of America, paper ITh3A-7. [Google Scholar]
  5. FANO: fast accurate Nurbs optimization. Available at https://sc22.mghpcc.org/project/fast-accurate-nurbs-optimization-fano/. [Google Scholar]
  6. Volatier J.B., Menduiña-Fernández Á., Erhard M. (2017) Generalization of differential ray tracing by automatic differentiation of computational graphs, J. Opt. Soc. Am. 34, 7, 1146–1151. https://doi.org/10.1364/JOSAA.34.001146. [NASA ADS] [CrossRef] [Google Scholar]
  7. Chrisp M.P., Primeau B., Echter M.A. (2016) Imaging freeform optical systems designed with NURBS surfaces, Opt. Eng. 55, 7, 071208. https://doi.org/10.1117/1.OE.55.7.071208. [NASA ADS] [CrossRef] [Google Scholar]
  8. Abert O.P. (2005) Interactive ray tracing of NURBS surfaces by using SIMD instructions and the GPU in parallel. Diploma Thesis, Nanyang Technological University. Available at https://userpages.uni-koblenz.de/~cg/Diplomarbeiten/DA_Oliver_Abert.pdf. [Google Scholar]
  9. Baydin A.G., Pearlmutter B.A., Radul A.A., Siskind J.M. (2017) Automatic differentiation in machine learning: a survey, J. Mach. Learn. Res. 18, 5595–5637. [Google Scholar]
  10. Revels J., Lubin M., Papamarkou T. (2016) Forward-mode automatic differentiation in Julia. Available at https://arxiv.org/abs/1607.07892 (visited on 07.08.2019). [Google Scholar]
  11. Bezanson J., Karpinski S., Shah V.B., Edelman A. (2012) Julia: A fast dynamic language for technical computing. Available at https://arxiv.org/abs/1209.5145. [Google Scholar]
  12. Schittkowski K. (1988) Solving constrained nonlinear least squares problems by a general purpose SQP-method, in: Trends in Mathematical Optimization: 4th French–German Conference on Optimization, Springer, pp. 295–309. [CrossRef] [Google Scholar]
  13. Moré J.J. (1978) The Levenberg–Marquardt algorithm: implementation and theory, in: Watson G.A. (ed), Numerical Analysis, Springer, Berlin Heidelberg, pp. 105–116. ISBN: 978-3-540-35972-2. [Google Scholar]
  14. MATLAB (2010) Version 7.10.0 (R2010a), The MathWorks Inc., Natick, Massachusetts. [Google Scholar]
  15. Van Rossum G., Drake F.L. (2009) Python 3 reference manual, CreateSpace, Scotts Valley, CA. ISBN: 1441412697. [Google Scholar]
  16. Lam S.K., Pitrou A., Seibert S. (2015) Numba: A LLVM-based python JIT compiler, in: Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC (LLVM ‘15), Association for Computing Machinery, New York, NY, pp. 1–6. https://doi.org/10.1145/2833157.2833162. [Google Scholar]
  17. Arakaki T., Bolewski J., Deits R., Fischer K., Johnson S.G., Bussonnier M., Norton I., Haraldsson P., Rocklin M., Shah V.B., Soto D. (2020) JuliaPy/pyjulia: PyJulia v0.5.6. Version v0.5.6. https://doi.org/10.5281/zenodo.4294940. [Google Scholar]
  18. Christ S., Schwabeneder D., Rackauckas C., Borregaard M.K., Breloff T. (2023) Plots.jl – a user extendable plotting API for the julia programming language, J. Open Res. Soft. 11, 1, 5. https://doi.org/10.5334/jors.431. [CrossRef] [Google Scholar]
  19. MeshCat.jl. Available at https://github.com/rdeits/MeshCat.jl (visited on 11.20.2023). [Google Scholar]
  20. Nonconvex.jl. Available at https://github.com/JuliaNonconvex/Nonconvex.jl (visited on 11.20.2023). [Google Scholar]
  21. Virtanen P., Gommers R., Oliphant T.E., Haberland M., Reddy T., Cournapeau D., Burovski E., Peterson P., Weckesser W., Bright J., Van der Walt S.J. (2020) SciPy 1.0: fundamental algorithms for scientific computing in Python, Nat. Methods 17, 3, 261–272. https://doi.org/10.1038/s41592-019-0686-2. [NASA ADS] [CrossRef] [Google Scholar]
  22. Formidable. Available at https://gitlab.space-codev.org/formidable/formidable (visited on 11.20.2023). [Google Scholar]
  23. ESCL. Available at https://essr.esa.int/license/european-space-agency-communitylicense-v2-4-strong-copyleft-type-1 (visited on 11.20.2023). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.