Open Access
Issue |
J. Eur. Opt. Society-Rapid Publ.
Volume 20, Number 1, 2024
THz imaging
|
|
---|---|---|
Article Number | 4 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/jeos/2024001 | |
Published online | 08 March 2024 |
- Zhong S., Nsengiyumva W. (2022) Ultrasonic testing techniques for nondestructive evaluation of fiber-reinforced composite structures, Nondestructive Testing and Evaluation of Fiber-Reinforced Composite Structures, Springer, Singapore, pp. 133–195. [CrossRef] [Google Scholar]
- Zhai M., Locquet A., Roquelet C., Alexandre P., Daheron L., Citrin D.S. (2020) Nondestructive measurement of mill-scale thickness on steel by terahertz time-of-flight tomography, Surf. Coat. Technol. 393, 125765. [CrossRef] [Google Scholar]
- Xu Y., Jiang X. (2022) Nondestructive testing and imaging of corrosion thickness of steel plates using THz-TDS, Infrared Phys. Technol. 127, 104467. [NASA ADS] [CrossRef] [Google Scholar]
- Zhai M., Locquet A., Roquelet C., Borean J.L., Meilland P., Citrin D.S. (2023) Nondestructive tertiary mill-scale thickness measurement on commercial hot-rolled steel strip: terahertz time-of-flight tomography, Steel Research International. [Google Scholar]
- Krugener K., Ornik J., Schneider L.M., Jäckel A., Koch-Dandolo C.L., Castro-Camus E., Riedl-Siedow N., Koch M., Viöl W. (2020) Terahertz inspection of buildings and architectural art, Appl. Sci. 10, 15, 5166. [CrossRef] [Google Scholar]
- Fukunaga K. (2023) Nondestructive evaluation of lined paintings by THz pulsed time-domain imaging, Heritage 6, 4, 3448–3460. [CrossRef] [Google Scholar]
- Tornari V., Andrianakis M., Duchêne S., Nowik W., Brissaud D., Giovannacci D., Küppers M., Rehorn C., Blümich B., Ricci G., Artioli G. (2023) A combined ND diagnostic investigation by DHSPI, SIRT, NMR, THZ, on Giotto fresco, J. Cult. Herit. 63, 206–216. [CrossRef] [Google Scholar]
- Zhai M., Locquet A., Citrin D.S. (2020) Pulsed THz imaging for thickness characterization of plastic sheets, NDT&E Int. 116, 102338. [Google Scholar]
- Xu Y., Hao H., Citrin D.S., Wang X., Zhang L., Chen X. (2021) Three-dimensional nondestructive characterization of delamination in GFRP by terahertz time-of-flight tomography with sparse Bayesian learning-based spectrum-graph integration strategy, Compos. Part B Eng. 225, 109285. [CrossRef] [Google Scholar]
- Lu X., Shen Y., Xu T., Sun H., Zhu L., Zhang J., Chang T., Cui H.L. (2022) Accurate detectyion of porosity in glass fiber reinforced polymers by terahertz spectroscopy, Compos. Part B Eng. 242, 110058. [CrossRef] [Google Scholar]
- Calvo-de la Rosa J., Pomarède P., Antonik P., Mertaghni F., Citrin D.S., Rontani D., Locquet A. (2023) Determination of the process-induced microstructure of woven glass fabric reinforced polyamide 6.6/6 composite using terahertz pulsed imaging, NDT&E Int. 136, 102799. [Google Scholar]
- P.H. Siegel, Therahertz technology in biology and medicine, IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447. [Google Scholar]
- Brun M.A., Formanek F., Yasuda A., Sekine M., Ando N., Eishii Y. (2010) Terahertz imaging applied to cancer diagnosis, Phys. Med. Biol. 55, 16, 4615. [NASA ADS] [CrossRef] [Google Scholar]
- Zaytsev K.I., Dolganova I.N., Chernomyrdin N.V., Katyba G.M., Gavdush A.A., Cherkasova O.P., Komandin G.A., Shchedrina M.A., Khodan A.N., Ponomarev D.S., Reshetov I.V., Karasik V.E., Skorobogatiy M., Kurlov V.N., Tuchin V.V. (2019) The progress and perspectives of terahertz technology for diagnosis of neoplasms: a review, J. Optics 22, 1, 013001. [Google Scholar]
- Davies A.G., Burnett A.D., Fan W., Linfield E.H., Cunningham J.E. (2008) Terahertz spectroscopy of explosives and drugs, Mater. Today 11, 3, 18–26. [CrossRef] [Google Scholar]
- Yan Z., Shi W. (2022) Detection of aging in the common explosive RDX using terahertz time-domain spectroscopy, J. Opt. Soc. Am. B 39, 3, A9–A12. [CrossRef] [Google Scholar]
- Sharma M., Sharma B., Gupta A.K., Pandey D. (2023) Recent developments of image processing to improve explosive detection methodologies and spectroscopic imaging techniques for explosive and drug detection, Multimed. Tools. Appl. 82, 6849–6865. [CrossRef] [Google Scholar]
- Mittleman D.M., Hunsche S., Boivin L., Nuss M.C. (1997) T-ray tomography, Opt. Lett. 23, 12, 904–906. [NASA ADS] [CrossRef] [Google Scholar]
- Chen Y., Huang S., Pickwell-MacPherson E. (2010) Frequency-wavelet domain deconvolution for terahertz reflection imaging and spectroscopy, Opt. Exp. 18, 2, 1177–1190. [NASA ADS] [CrossRef] [Google Scholar]
- Dong J., Locquet A., Citrin D.S. (2017) Depth resolution enhancement of terahertz deconvolution by autoregressive spectral extrapolation, Opt. Lett. 42 9, 1828–1831. [NASA ADS] [CrossRef] [Google Scholar]
- Zhai M., Locquet A., Roquelet C., Citrin D.S. (2020) Terahertz Time-of-flight tomography beyond the axial resolution limit: Autoregressive spectral estimation based on the modified covariance method, J. Infrared Millim. Terahertz Waves 41, 926–939. [NASA ADS] [CrossRef] [Google Scholar]
- Dong J., Wu X., Locquet A., Citrin D.S. (2017) Terahertz superresolution stratigraphic characterization of multilayered structures using sparse deconvolution, IEEE Trans. Terahertz Sci. Technol. 7, 3, 260–267. [CrossRef] [Google Scholar]
- Chang Y., Zi Y., Zhao J., Yang Z., He W., Sun H. (2017) An adaptive sparse deconvolution method for distinguishing the overlapping echoes of ultrasonic guided waves for pipeline crack inspection, Meas. Sci. Technol. 28, 035002. [NASA ADS] [CrossRef] [Google Scholar]
- Zhai M., Citrin D.S., Locquet A. (2021) Terahertz nondestructive stratigraphic analysis of complex layered structures: reconstruction techniques, J. Infrared Millim. Terahertz Waves 42, 929–946. [NASA ADS] [CrossRef] [Google Scholar]
- Huang Y., Sun P., Zhang Z., Jin C. (2017) Numerical method based on transfer function for eliminating water vapor noise from terahertz spectra, Appl. Opt. 56, 20, 5698–5704. [NASA ADS] [CrossRef] [Google Scholar]
- Neu J., Schmuttenmaer C.A. (2018) Tutorial: An introduction to terahertz time domain spectroscopy, J. Appl. Phys. 124, 23, 231101. [NASA ADS] [CrossRef] [Google Scholar]
- Bioucas-Dias J.M., Figueiredo M.A.T. (2007) A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration, IEEE Trans. Image Process. 16, 12, 2992–3004. [CrossRef] [Google Scholar]
- Huang C., Ji H., Qiu J., Wang L., Wang X. (2022) TWIST sparse regularization method using cubic B-spline dual scaling functions for impact force identification, Mech. Syst Signal Process. 167, 108451. [CrossRef] [Google Scholar]
- Xu Y., Fang X., Fan S., Zhang L., Yan R., Chen X. (2022) Double Gaussian mixture model-based terahertz wave dispersion compensation method using convex optimization technique, Mech. Syst. Signal Process. 164, 108223. [NASA ADS] [CrossRef] [Google Scholar]
- Moré J.J. (1977) The Levenberg-Marquardt algorithm: implementation and theory, in Numerical analysis: Proceedings of the Biennial Conference Held at Dundee, June 28–July 1, 1977, Springer, Berlin, Heidelberg, pp. 105–116. [Google Scholar]
- Abdessalem B., Farid C. (2020) Resolution improvement of ultrasonic signals using sparse deconvolution and variational mode decomposition algorithms, Russ. J. Nondestruct. Test. 56, 6, 479–489. [CrossRef] [Google Scholar]
- Zhai M., Locquet A., Citrin D.S. (2021) Terahertz imaging for paper handling of legacy documents, Sensors 21 20, 6756. [NASA ADS] [CrossRef] [Google Scholar]
- Vandrevala F., Einarsson E. (2018) Decoupling substrate thickness and refractive index measurement in THz time-domain spectroscopy, Opt. Exp. 26, 2, 1697–1702. [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.