EOSAM 2023
Open Access
Issue
J. Eur. Opt. Society-Rapid Publ.
Volume 20, Number 1, 2024
EOSAM 2023
Article Number 5
Number of page(s) 16
DOI https://doi.org/10.1051/jeos/2024003
Published online 12 March 2024
  1. Goldstein D.H. (2010) Polarized Light, Marcel Dekker, New York, NY, USA. [Google Scholar]
  2. Ramella-Roman J.C., Saytashev I., Piccini M. (2020) A review of polarization-based imaging technologies for clinical and preclinical applications, J. Opt. 22, 123001. https://doi.org/10.1088/2040-8986/abbf8a. [NASA ADS] [CrossRef] [Google Scholar]
  3. He C., He H., Chang J., Chen B., Ma H., Booth M.J. (2021) Polarisation optics for biomedical and clinical applications: a review, Light Sci Appl. 10, 194. https://doi.org/10.1038/s41377-021-00639-x. [NASA ADS] [CrossRef] [Google Scholar]
  4. Gottlieb D., Arteaga O. (2021) Mueller matrix imaging with a polarization camera: application to microscopy, Opt. Express 29, 21, 34723–34374. https://doi.org/10.1364/OE.439529. [NASA ADS] [CrossRef] [Google Scholar]
  5. Van Eeckhout A., Garcia-Caurel E., Garnatje T., Escalera J.C., Durfort M., Vidal J., Gil J.J., Campos J., Lizana A. (2021) Polarimetric imaging microscopy for advanced inspection of vegetal tissues, Sci. Rep. 11, 3913. https://doi.org/10.1038/s41598-021-83421-8. [Google Scholar]
  6. Rubinsztein-Dunlop H., Forbes A., Berry M.V., Dennis M.R., Andrews D.L., Mansuripur M., Denz C., Alpmann C., Banzer P., Bauer T., Karimi E., Marrucci L., Padgett M., Ritsch-Marte M., Litchinitser N.M., Bigelow N.P., Rosales-Guzmán C., Belmonte A., Torres J.P., Neely T.W., Baker M., Gordon R., Stilgoe A.B., Romero J., White A.G., Fickler R., Willner A.E., Xie G., McMorran B., Weiner A.M. (2017) Roadmap on structured light, J. Opt. 19, 013001. https://doi.org/10.1088/2040-8978/19/1/013001. [CrossRef] [Google Scholar]
  7. Piquero G., Martínez-Herrero R., de Sande J.C.G., Santarsiero M. (2020) Synthesis and characterization of non-uniformly totally polarized light beams: tutorial, J. Opt. Soc. Am. A 37, 4, 591. https://doi.org/10.1364/JOSAA.379439. [NASA ADS] [CrossRef] [Google Scholar]
  8. Rosales-Guzmán C., Ndagano B., Forbes A. (2018) A review of complex vector light fields and their applications, J. Opt. 20, 123001. https://doi.org/10.1088/2040-8986/aaeb7d. [CrossRef] [Google Scholar]
  9. Devrinkas R., Kazansky P.G. (2017) High-performance geometric phase elements in silica glass, APL Photon. 2, 066104. https://doi.org/10.1063/1.4984066. [NASA ADS] [CrossRef] [Google Scholar]
  10. Liu G.-G., Lee Y.-H., Huang Y., Zhu Z., Tan G., Cai M.-Q., Li P.-P., Wang D., Li Y., Pang S., Tu C., Wu S.-T., Wang H.-T. (2017) Dielectric broadband meta-vector-polarizers based on nematic liquid crystal, APL Photon. 2, 066104. https://doi.org/10.1063/1.5006016. [NASA ADS] [CrossRef] [Google Scholar]
  11. Davis J.A., McNamara D.E., Cottrell D.M., Sonehara T. (2000) Two-dimensional polarization encoding with a phase-only liquid-crystal spatial light modulator, Appl. Opt. 39, 10, 1549–1554. https://doi.org/10.1364/AO.39.001549. [CrossRef] [Google Scholar]
  12. Kenny F., Lara D., Rodríguez-Herrera O.G., Dainty C. (2012) Complete polarization and phase control for focus-shaping in high-NA microscopy, Opt. Exp. 20, 13, 14015–14029. https://doi.org/10.1364/OE.20.014015. [NASA ADS] [CrossRef] [Google Scholar]
  13. Wen D., Croizier K.B. (2021) Metasurfaces 2.0: Laser-integrated and with vector field control, APL Photon. 6, 080902. https://doi.org/10.1063/5.0057904. [NASA ADS] [CrossRef] [Google Scholar]
  14. De Sio L., Roberts D.E., Liao Z., Nersisyan S., Uskova O., Wickboldt L., Tabiryan N., Steeves D.M., Kimball B.R. (2016) Digital polarization holography advancing geometrical phase optics, Opt. Exp. 24, 16, 18297–18306. https://doi.org/10.1364/OE.24.018297. [NASA ADS] [CrossRef] [Google Scholar]
  15. Curcio V., Alemán-Castañeda L.A., Brown T.G., Brasselet S., Alonso M.A. (2020) Birefringent Fourier filtering for single molecule coordinate and height super-resolution imaging with dithering and orientation, Nature Commun. 11, 5307. https://doi.org/10.1038/s41467-020-19064-6. [NASA ADS] [CrossRef] [Google Scholar]
  16. Zhang Z., Dong F., Cheng T., Qiu K., Zhang Q., Chu W., Wu X. (2014) Nano-fabricated pixelated micropolarizer array for visible imaging polarimetry, Rev. Sci. Instrum. 85, 105002. https://doi.org/10.1063/1.4897270. [CrossRef] [PubMed] [Google Scholar]
  17. Singh K., Tabebordbar N., Forbes A., Dudley A. (2020) Digital Stokes polarimetry and its application to structured light: tutorial, J. Opt. Soc. Am. A 37, C33–C44. https://doi.org/10.1364/JOSAA.397912. [CrossRef] [Google Scholar]
  18. Angelo J.P., Germer T.A., Litorja M. (2019) Structured illumination Mueller matrix imaging, Biomed. Opt. Exp. 10, 6, 2861–2868. https://doi.org/10.1364/BOE.10.002861. [CrossRef] [Google Scholar]
  19. Rubin N.A., D’Aversa G., Chevalier P., Shi Z., Chen W.T., Capasso F. (2019) Matrix Fourier optics enables a compact full-Stokes polarization camera, Science 365, eaax1839. https://doi.org/10.1126/science.aax18. [Google Scholar]
  20. Arteaga O., Bendada H. (2020) Geometrical phase optical components: Measuring geometric phase without interferometry, Crystals 10, 880. https://doi.org/10.3390/cryst10100880. [CrossRef] [Google Scholar]
  21. López-Morales G., Sánchez-López M.M., Lizana A., Moreno I., Campos J. (2020) Mueller matrix polarimetric imaging analysis of optical components for the generation of cylindrical vector beams, Crystals 10, 1155. https://doi.org/10.3390/cryst10121155. [CrossRef] [Google Scholar]
  22. Pezzaniti J.L., Chipman R.A. (1995) Mueller matrix imaging polarimetry, Opt. Eng. 34, 6, 1558–1568. https://doi.org/10.1117/12.206161. [NASA ADS] [CrossRef] [Google Scholar]
  23. Kudenov M.W., Escuti M.J., Hagen N., Dereniak E.L., Oka K. (2012) Snapshot imaging Mueller matrix polarimeter using polarization gratings, Opt. Lett. 37, 8, 1367–1369. https://doi.org/10.1364/OL.37.001367. [NASA ADS] [CrossRef] [Google Scholar]
  24. Carnicer A., Bosch S., Javidi B. (2019) Mueller matrix polarimetry with 3D integral imaging, Opt. Exp. 27, 8, 11525–11536. https://doi.org/10.1364/OE.27.011525. [NASA ADS] [CrossRef] [Google Scholar]
  25. Garcia-Caurel E., Ossikovski R., Foldyna M., Pierangelo A., Drévillon B., De Martino A. (2013) Advanced Mueller ellipsometry instrumentation and data analysis (Chapter 2), in Ellipsometry at the nanoscale, M. Losurdo, K. Hingerl (eds.),Springer Verlag, Berlin. [Google Scholar]
  26. Vargas A., Donoso R., Ramírez M., Carrión J., Sánchez-López M.M., Moreno I. (2013) Liquid crystal retarder spectral retardance characterization based on a Cauchy dispersion relation and a voltage transfer function, Opt. Rev. 20, 5, 378–384. https://doi.org/10.1007/s10043-013-0068-4. [NASA ADS] [CrossRef] [Google Scholar]
  27. Messaadi A., Sánchez-López M.M., García-Martínez P., Vargas A., Moreno I. (2016) Optical system for measuring the spectral retardance function in an extended range, J. Eur. Opt. Soc. – Rapid Pub. 12, 12, 21. https://doi.org/10.1186/s41476-016-0023-7. [CrossRef] [Google Scholar]
  28. Vargas A., Sánchez-López M.M., García-Martínez P., Arias J., Moreno I. (2014) Highly accurate spectral retardance characterization of a liquid crystal retarder including Fabry-Perot interference effects, J. Appl. Phys. 115, 3, 033101. https://doi.org/10.1063/1.4861635. [NASA ADS] [CrossRef] [Google Scholar]
  29. Chipman R.A. (1995) Polarimetry, in Handbook of Optics, 2nd edn., McGraw-Hill, New York. [Google Scholar]
  30. Twietmeyer K.M., Chipman R.A. (2008) Optimization of Mueller matrix polarimeters in the presence of error sources, Opt. Exp. 16, 15, 11589–11603. https://doi.org/10.1364/OE.16.011589. [NASA ADS] [CrossRef] [Google Scholar]
  31. Peña-Gutiérrez S., Royo S. (2023) Polarization calibration assessment for a broadband imaging polarimeter based on a division of aperture architecture, Opt. Exp. 31, 3, 3839–3856. https://doi.org/10.1364/OE.472070. [CrossRef] [Google Scholar]
  32. Peinado A., Lizana A., Vidal J., Iemmi C., Campos J. (2010) Optimization and performance criteria of a Stokes polarimeter based on two variable retarders, Opt. Exp. 18, 8, 9815. https://doi.org/10.1364/OE.18.009815. [NASA ADS] [CrossRef] [Google Scholar]
  33. Cofré A., Vargas A., Torres-Ruiz F.A., Campos J., Lizana A., Sánchez-López M.M., Moreno I. (2017) Quantitative performance of a polarization diffraction grating polarimeter encoded onto two liquid-crystal-on-silicon displays, Opt. Laser Technol. 96, 219–226. https://doi.org/10.1016/j.optlastec.2017.05.027. [CrossRef] [Google Scholar]
  34. Roussel S., Boffety M., Goudail F. (2018) Polarimetric precision of micropolarizer grid-based camera in the presence of additive and Poisson shot noise, Opt. Exp. 26, 23, 29968–29982. https://doi.org/10.1364/OE.26.029968. [NASA ADS] [CrossRef] [Google Scholar]
  35. Janesick J. (1997) CCD transfer method – standard for absolute performance of CCDs and digital CCD camera systems, Proc. SPIE 3019, 70–102. https://doi.org/10.1117/12.275190. [Google Scholar]
  36. Roussel S., Boffety M., Goudail F. (2019) On the optimal ways to perform full Stokes measurements with a linear division-of-focal plane polarimetric imager and a retarder, Opt. Lett. 44, 11, 2927–2930. https://doi.org/10.1364/OL.44.002927. [NASA ADS] [CrossRef] [Google Scholar]
  37. Lu S.-Y., Chipman R.A. (1996) Interpretation of Mueller matrices based on polar decomposition, J. Opt. Soc. Am. A 13, 5, 1106–1113. https://doi.org/10.1364/JOSAA.13.001106. [NASA ADS] [CrossRef] [Google Scholar]
  38. Gil J.J., Ossikovski R. (2022) Polarized light and the mueller matrix approach, CRC Press, New York. https://doi.org/10.1201/9780367815578. [Google Scholar]
  39. Rubano A., Cardano F., Piccirillo B., Marrucci L. (2019) Q-plate technology: A progress review, J. Opt. Soc. Am. B 36, 5, D70–D87. https://doi.org/10.1364/JOSAB.36.000D70. [CrossRef] [Google Scholar]
  40. Martínez A., Beaudoin N., Moreno I., Sánchez-López M.M., Velásquez P. (2006) Optimization of the contrast ratio of a ferroelectric liquid crystal optical modulator, J. Opt. A: Pure Appl. Opt. 8, 11, 1013–1018. https://doi.org/10.1088/1464-4258/8/11/013. [CrossRef] [Google Scholar]
  41. Lizana A., Estévez I., Torres-Ruiz F.A., Peinado A., Ramirez C., Campos J. (2015) Arbitrary state of polarization with customized degree of polarization generator, Opt. Lett. 40, 16, 3790–3793. https://doi.org/10.1364/OL.40.003790. [NASA ADS] [CrossRef] [Google Scholar]
  42. Marco D., López-Morales G., Sánchez-López M.M., Lizana A., Moreno I., Campos J. (2021) Customized depolarization spatial patterns with dynamic retardance functions, Sci. Rep. 11, 9415. https://doi.org/10.1038/s41598-021-88515-x. [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.