Open Access
Issue
J. Eur. Opt. Society-Rapid Publ.
Volume 19, Number 2, 2023
Article Number 45
Number of page(s) 12
DOI https://doi.org/10.1051/jeos/2023045
Published online 22 December 2023
  1. Hu J., Shen X., Yu H., Shang X., Guo Q., Zhang B. (2021) Extended subspace projection upon sample augmentation based on global spatial and local spectral similarity for hyperspectral imagery classification, IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 14, 8653–8664. https://doi.org/10.1109/JSTARS.2021.3107105. [NASA ADS] [CrossRef] [Google Scholar]
  2. Lu X., Yang D., Jia F., Yang Y., Zhang L. (2021) Hyperspectral image classification based on multilevel joint feature extraction network, IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 14, 10977–10989. https://doi.org/10.1109/JSTARS.2021.3123371. [NASA ADS] [CrossRef] [Google Scholar]
  3. Zhao C., Li C., Feng S., Su N., Li W. (2020) A spectral-spatial anomaly target detection method based on fractional Fourier transform and saliency weighted collaborative representation for hyperspectral images, IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 13, 5982–5997. https://doi.org/10.1109/JSTARS.2020.3028372. [NASA ADS] [CrossRef] [Google Scholar]
  4. Xie W., Zhang X., Li Y., Wang K., Du Q. (2020) Background learning based on target suppression constraint for hyperspectral target detection, IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 13, 5887–5897. https://doi.org/10.1109/JSTARS.2020.3024903. [NASA ADS] [CrossRef] [Google Scholar]
  5. Khan M.J., Khan H.S., Yousaf A., Khurshid K., Abbas A. (2018) Modern trends in hyperspectral image analysis: a review, IEEE Access. 6, 14118–14129. https://doi.org/10.1109/ACCESS.2018.2812999. [NASA ADS] [CrossRef] [Google Scholar]
  6. Fischer R.L., Shuart W.J., Anderson J.E., Massaro R.D., Ruby J.G. (2022) Bidirectional reflectance distribution function modeling considerations in small unmanned multispectral systems, IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 15, 3564–3575. https://doi.org/10.1109/JSTARS.2022.3171393. [NASA ADS] [CrossRef] [Google Scholar]
  7. Han W., Lim J., Lee S.-J., Kim C.-Y., Kim W.-C., Park N.-C. (2022) Bidirectional Reflectance Distribution Function (BRDF)-Based Coarseness Prediction of Textured Metal Surface, IEEE Access. 10, 32461–32469. https://doi.org/10.1109/ACCESS.2022.3161518. [NASA ADS] [CrossRef] [Google Scholar]
  8. Wu S., Wen J., Liu Q., You D., Yin G., Lin X. (2020) Improving Kernel-Driven BRDF model for capturing vegetation canopy reflectance with large leaf inclinations, IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 13, 2639–2655. https://doi.org/10.1109/JSTARS.2020.2987424. [NASA ADS] [CrossRef] [Google Scholar]
  9. Guan Y., Zhou Y., He B., Liu X., Zhang H., Feng S. (2020) Improving land cover change detection and classification with BRDF correction and spatial feature extraction using landsat time series: a case of urbanization in Tianjin, China, IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 13, 4166–4177. https://doi.org/10.1109/JSTARS.2020.3007562. [NASA ADS] [CrossRef] [Google Scholar]
  10. Dkhala B., Mezned N., Abdeljaouad S. (2022) Hyperspectral spectroscopy for change detection of mineral with high pollution potential contents, in: IEEE Mediterranean and Middle-East Geoscience and Remote Sensing Symposium (M2GARSS), pp. 98–101. https://doi.org/10.1109/M2GARSS52314.2022.9840286. [CrossRef] [Google Scholar]
  11. Zuo Q., Guo B., Shen H., Yang M., Cheng K. (2017) An improved target detection algorithm for camouflaged targets, in: 36th Chinese Control Conference (CCC), pp. 11478–11482. https://doi.org/10.23919/ChiCC.2017.8029190. [Google Scholar]
  12. Morton K.D., Torrione P., Collins L.M. (2010) Dirichlet process based context learning for mine detection in hyperspectral imagery”, in: 2010, 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, pp. 1–4. https://doi.org/10.1109/WHISPERS.2010.5594926. [Google Scholar]
  13. Qi J., Gong Z., Xue W., Liu X., Yao A., Zhong P. (2021) An unmixing-based network for underwater target detection from hyperspectral imagery, IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 14, 5470–5487. https://doi.org/10.1109/JSTARS.2021.3080919. [NASA ADS] [CrossRef] [Google Scholar]
  14. Koz A. (2019) Ground-based hyperspectral image surveillance systems for explosive detection: part I – state of the art and challenges, IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 12, 12, 4746–4753. https://doi.org/10.1109/JSTARS.2019.2957484. [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.