Open Access
Issue
J. Eur. Opt. Society-Rapid Publ.
Volume 18, Number 2, 2022
Article Number 12
Number of page(s) 4
DOI https://doi.org/10.1051/jeos/2022012
Published online 06 December 2022
  1. Mandel L., Wolf E. (1995) Optical coherence and quantum optics, Cambridge University Press, Cambridge. [CrossRef] [Google Scholar]
  2. Korotkova O. (2014) Random light beams: theory and applications, CRC Press, Boca Raton. [Google Scholar]
  3. Friberg A.T., Setälä T. (2016) Electromagnetic theory of optical coherence [Invited], J. Opt. Soc. Am. A 33, 2431. [NASA ADS] [CrossRef] [Google Scholar]
  4. Laatikainen J., Friberg A.T., Korotkova O., Setälä T. (2021) Poincaré sphere of electromagnetic spatial coherence, Opt. Lett. 46, 2143. [NASA ADS] [CrossRef] [Google Scholar]
  5. Laatikainen J., Friberg A.T., Korotkova O., Setälä T. (2022) Coherence Poincaré sphere of partially polarized optical beams, Phys. Rev. A 105, 033506. [NASA ADS] [CrossRef] [Google Scholar]
  6. Brosseau C. (1998) Fundamentals of polarized light: a statistical optics approach, Wiley, New York. [Google Scholar]
  7. Gil J.J., Ossikovski R. (2016) Polarized light and the Mueller matrix approach, CRC Press, Boca Raton. [Google Scholar]
  8. Nielsen A., Chuang I.L. (2010) Quantum computation and quantum information, Cambridge University Press, Cambridge. [Google Scholar]
  9. Beckley A.M., Brown T.G., Alonso M.A. (2010) Full Poincaré beams, Opt. Express 18, 10777. [CrossRef] [Google Scholar]
  10. Padgett M.J., Courtial J. (1999) Poincaré sphere equivalent for light beams containing orbital angular momentum, Opt. Lett. 24, 439. [Google Scholar]
  11. Milione G., Sztul H.I., Nolan D.A., Alfano R.R. (2011) Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light, Phys. Rev. Lett. 107, 053601. [NASA ADS] [CrossRef] [Google Scholar]
  12. Zang X., Bautista G., Turquet L., Setälä T., Kauranen M., Turunen J. (2021) Efficient hybrid-mode excitation in plasmonic nanoantennas by tightly focused higher-order vector beams, J. Opt. Soc. Am. B. 38, 521. [CrossRef] [Google Scholar]
  13. Ren Z.C., Kong L.J., Li S.M., Qian S.X., Li Y., Tu C., Wang H.T. (2015) Generalized Poincaré sphere, Opt. Express 23, 26586. [CrossRef] [Google Scholar]
  14. Halder A., Norrman A., Friberg A.T. (2021) Poincaré sphere representation of scalar two-beam interference under spatial unitary transformations, Opt. Lett. 46, 5619. [NASA ADS] [CrossRef] [Google Scholar]
  15. Luo M., Laatikainen J., Friberg A.T., Korotkova O., Setälä T. (2022) Singular-value decomposition and electromagnetic coherence of optical beams, Opt. Lett. 47, 5337. [NASA ADS] [CrossRef] [Google Scholar]
  16. Tervo J., Setälä T., Friberg A.T. (2004) Theory of partially coherent electromagnetic fields in the space–frequency domain, J. Opt. Soc. Am. A 21, 2205. [NASA ADS] [CrossRef] [Google Scholar]
  17. Tervo J., Setälä T., Friberg A.T. (2003) Degree of coherence for electromagnetic fields, Opt. Express 11, 1137. [NASA ADS] [CrossRef] [Google Scholar]
  18. Gori F., Tervo J., Turunen J. (2009) Correlation matrices of completely unpolarized beams, Opt. Lett. 34, 1447. [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.