Open Access
J. Eur. Opt. Society-Rapid Publ.
Volume 18, Number 2, 2022
Article Number 11
Number of page(s) 7
Published online 25 November 2022
  1. Briers J.D., Webster S. (1996) Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow, J. Biomed. Opt. 1, 2, 174–180. [NASA ADS] [CrossRef] [Google Scholar]
  2. Boas D.A., Dunn A.K. (2010) Laser speckle contrast imaging in biomedical optics, J. Biomed. Opt. 15, 1, 011109. [NASA ADS] [CrossRef] [Google Scholar]
  3. Dunn A.K. (2012) Laser speckle contrast imaging of cerebral blood flow, Ann. Biomed. Eng. 40, 2, 367–377. [NASA ADS] [CrossRef] [Google Scholar]
  4. Stern M. (1975) In vivo evaluation of microcirculation by coherent light scattering, Nature 254, 5495, 56. [NASA ADS] [CrossRef] [Google Scholar]
  5. Draijer M., Hondebrink E., van Leeuwen T., Steenbergen W. (2009) Review of laser speckle contrast techniques for visualizing tissue perfusion, Lasers Med. Sci. 24, 4, 639. [CrossRef] [Google Scholar]
  6. Basak K., Manjunatha M., Dutta P.K. (2012) Review of laser speckle-based analysis in medical imaging, Med. Biol. Eng. Comput. 50, 6, 547–558. [CrossRef] [Google Scholar]
  7. Yoshimura T. (1986) Statistical properties of dynamic speckles, J. Opt. Soc. Am. A 3, 7, 1032–1054. [NASA ADS] [CrossRef] [Google Scholar]
  8. Asakura T., Takai N. (1981) Dynamic laser speckles and their application to velocity measurements of the diffuse object, Appl. Phys. 25, 3, 179–194. [NASA ADS] [CrossRef] [Google Scholar]
  9. Fercher A.F., Briers J.D. (1981) Flow visualization by means of single-exposure speckle photography, Opt. Commun. 375, 326–330. [NASA ADS] [CrossRef] [Google Scholar]
  10. Wang Y., Lv W., Chen X., Lu J., Li P. (2017) Improving the sensitivity of velocity measurements in laser speckle contrast imaging using a noise correction method, Opt. Lett. 42, 22, 4655–4658. [NASA ADS] [CrossRef] [Google Scholar]
  11. Rosen J., Abookasis D. (2004) Noninvasive optical imaging by speckle ensemble, Opt. Lett. 29, 3, 253–255. [NASA ADS] [CrossRef] [Google Scholar]
  12. Shinohara Y., Kashima T., Akiyama H., Shimoda Y., Li D., Kishi S. (2017) Evaluation of fundus blood flow in normal individuals and patients with internal carotid artery obstruction using laser speckle flowgraphy, PloS One 121, 0169596. [Google Scholar]
  13. Lambrecht V., Cutolo M., De Keyser F., Decuman S., Ruaro B., Sulli A., Deschepper E., Smith V. (2016) Reliability of the quantitative assessment of peripheral blood perfusion by laser speckle contrast analysis in a systemic sclerosis cohort, Ann. Rheum. Dis. 75, 6, 1263–1264. [CrossRef] [Google Scholar]
  14. Tuchin V. (2007) Tissue optics: light scattering methods and instruments for medical diagnosis, SPIE Press, Bellingham. [Google Scholar]
  15. Qureshi M.M., Liu Y., Mac K.D., Kim M., Safi A.M., Chung E. (2021) Quantitative blood flow estimation in vivo by optical speckle image velocimetry, Optica 8, 8, 1092–1101. [NASA ADS] [CrossRef] [Google Scholar]
  16. Nadort A., Kalkman K., Van Leeuwen T.G., Faber D.J. (2016) Quantitative blood flow velocity imaging using laser speckle flowmetry, Sci. Rep. 6, 1, 1–10. [CrossRef] [Google Scholar]
  17. Duncan D.D., Kirkpatrick S.J. (2008) Can laser speckle flowmetry be made a quantitative tool?, J. Opt. Soc. Am. A. Opt. Image. Sci. Vis. 25, 8, 2088–2094. [NASA ADS] [CrossRef] [Google Scholar]
  18. Bandyopadhyay R., Gittings A., Suh S., Dixon P., Durian D.J. (2005) Speckle-visibility spectroscopy: A tool to study time-varying dynamics, Rev. Sci. Instrum. 76, 9, 093110. [NASA ADS] [CrossRef] [Google Scholar]
  19. Duncan D.D., Kirkpatrick S.J., Gladish J.C. (2008) What is the proper statistical model for laser speckle flowmetry? Complex Dynamics and Fluctuations in Biomedical Photonics V 6855, 685502. International Society for Optics and Photonics. [NASA ADS] [CrossRef] [Google Scholar]
  20. Briers D., Duncan D.D., Hirst E.R., Kirkpatrick S.J., Larsson M., Steenbergen W., Stromberg T., Thompson O.B. (2013) Laser speckle contrast imaging: theoretical and practical limitations, J. Biomed. Opt. 18, 6, 066018. [NASA ADS] [CrossRef] [Google Scholar]
  21. Thompson O.B., Andrews M.K. (2010) Tissue perfusion measurements: multiple-exposure laser speckle analysis generates laser doppler-like spectra, J. Biomed. Opt. 15, 2, 027015. [CrossRef] [Google Scholar]
  22. Parthasarathy A.B., Tom W.J., Gopal A., Zhang X., Dunn A.K. (2008) Robust flow measurement with multi-exposure speckle imaging, Opt. Express 16, 3, 1975–1989. [NASA ADS] [CrossRef] [Google Scholar]
  23. Wang J., Wang Y., Li B., Feng D., Lu J., Luo Q., Li P. (2013) Dual-wavelength laser speckle imaging to simultaneously access blood flow, blood volume, and oxygenation using a color CCD camera, Opt. Lett. 38, 18, 3690–3692. [NASA ADS] [CrossRef] [Google Scholar]
  24. van As K., Boterman J., Kleijn C.R., Kenjeres S., Bhattacharya N. (2019) Laser speckle imaging of flowing blood: A numerical study, Phys. Rev. E 100, 3, 033317. [NASA ADS] [CrossRef] [Google Scholar]
  25. Nemati M., Kenjeres S., Urbach H.P., Bhattacharya N. (2016) Fractality of pulsatile flow in speckle images, J. Appl. Phys. 119, 17, 174902. [NASA ADS] [CrossRef] [Google Scholar]
  26. Kirkpatrick S.J., Duncan D.D., Wells-Gray E.M. (2008) Detrimental effects of speckle-pixel size matching in laser speckle contrast imaging, Opt. Lett. 33, 24, 2886–2888. [NASA ADS] [CrossRef] [Google Scholar]
  27. Goodman J.W. (1975) Statistical properties of laser speckle patterns, Laser Speckle and Related Phenomena, Springer, Berlin, Heidelberg, pp. 9–75. [Google Scholar]
  28. Goodman J.W. (2015) Statistical optics, John Wiley & Sons, New Jersey. [Google Scholar]
  29. Briers J., Fercher A. (1983) Laser speckle technique for the visualization of retinal blood flow, Max Born Centenary Conf. 369, 22–29. International Society for Optics and Photonics [NASA ADS] [CrossRef] [Google Scholar]
  30. Wang C., Cao Z., Jin X., Lin W., Zheng Y., Zeng B., Xu M. (2019) Robust quantitative single-exposure laser speckle imaging with true flow speckle contrast in the temporal and spatial domains, Biomed. Opt. Express 10, 8, 4097–4114. [CrossRef] [Google Scholar]
  31. Le V.N.D., Srinivasan V.J. (2020) Beyond diffuse correlations: deciphering random flow in time-of-flight resolved light dynamics, Opt. Express 28, 8, 11191–11214. [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.