EOSAM 2021
Open Access
Issue
J. Eur. Opt. Society-Rapid Publ.
Volume 18, Number 1, 2022
EOSAM 2021
Article Number 6
Number of page(s) 7
DOI https://doi.org/10.1051/jeos/2022006
Published online 22 August 2022
  1. Segev M., Bandres M.A. (2021) Topological photonics: Where do we go from here?, Nanophotonics 10, 1, 425–434. [Google Scholar]
  2. Ota Y., Takata K., Ozawa T., Amo A., Jia Z., Kante B., Notomi M., Arakawa Y., Iwamoto S. (2020) Active topological photonics, Nanophotonics 9, 3, 547–567. [CrossRef] [Google Scholar]
  3. Ozawa T., Price H.M., Amo A., Goldman N., Hafezi M., Lu L., Rechtsman M.C., Schuster D., Simon J., Zilberberg O., Carusotto I. (2019) Topological photonics, Rev. Mod. Phys. 91, 015006. [NASA ADS] [CrossRef] [Google Scholar]
  4. Joannopoulos J.D., Johnson S.G., Winn J.N., Meade R.D. (2011) Photonic crystals, Princeton University Press, Cambridge (MA). [CrossRef] [Google Scholar]
  5. Bergholtz E.J., Budich J.C., Kunst F.K. (2021) Exceptional topology of non-Hermitian systems, Rev. Mod. Phys. 93, 1, 015005. [NASA ADS] [CrossRef] [Google Scholar]
  6. Huang Y., Shen Y., Veronis G. (2022) Topological edge states at singular points in non-Hermitian plasmonic systems, Photon. Res. 10, 3, 747–757. [CrossRef] [Google Scholar]
  7. Wang H., Zhang X., Hua J., Lei D., Lu M., Chen Y. (2021) Topological physics of non-Hermitian optics and photonics: a review, J. Opt. 23, 12, 123001. [NASA ADS] [CrossRef] [Google Scholar]
  8. Rüter C.E., Makris K.G., El-Ganainy R., Christodoulides D.N., Segev M., Kip D. (2010) Observation of parity-time symmetry in optics, Nat. Phys. 6, 3, 192–195. [CrossRef] [Google Scholar]
  9. El-Ganainy R., Makris K.G., Khajavikhan M., Musslimani Z.H., Rotter S., Christodoulides D.N. (2018) Non-Hermitian physics and pt symmetry, Nat. Phys. 14, 1, 11–19. [NASA ADS] [CrossRef] [Google Scholar]
  10. Zhao H., Feng L. (2018) Parity-time symmetric photonics, Natl. Sci. Rev. 5, 2, 183–199. [CrossRef] [Google Scholar]
  11. Peng B., Özdemir Ş.K., Lei F., Monifi F., Gianfreda M., Long G.L., Fan S., Nori F., Bender C.M., Yang L. (2014) Parity-time-symmetric whispering-gallery microcavities, Nat. Phys. 10, 5, 394–398. [CrossRef] [Google Scholar]
  12. Özdemir Ş.K., Rotter S., Nori F., Yang L. (2019) Parity-time symmetry and exceptional points in photonics, Nat. Mater. 18, 8, 783–798. [CrossRef] [Google Scholar]
  13. Lin X.-S., Yan J.-H., Wu L.-J., Lan S. (2008) High transmission contrast for single resonator based all-optical diodes with pump-assisting, Opt. Express 16, 25, 20949–20954. [NASA ADS] [CrossRef] [Google Scholar]
  14. Yin X., Zhang X. (2013) Unidirectional light propagation at exceptional points, Nat. Mater. 12, 3, 175–177. [NASA ADS] [CrossRef] [Google Scholar]
  15. Slowik I., Zhang Y., Mischok A., Brückner R., Lyssenko V.G., Fröb H., Kronenberg N.M., Gather M.C., Leo K. (2015) Fano-like interference in the emission spectra of a multimode organic microcavity, IEEE J. Sel. Top. Quantum Electron. 22, 1, 60–65. [Google Scholar]
  16. Peng B., Özdemir Ş.K., Liertzer M., Chen W., Kramer J., Yilmaz H., Wiersig J., Rotter S., Yang L. (2016) Chiral modes and directional lasing at exceptional points, Proc. Natl. Acad. Sci. USA 113, 25, 6845–6850. [NASA ADS] [CrossRef] [Google Scholar]
  17. Kozlov V.G., Bulović V., Burrows P.E., Forrest S.R. (1997) Laser action in organic semiconductor waveguide and double-heterostructure devices, Nature 389, 362–364. [NASA ADS] [CrossRef] [Google Scholar]
  18. Tzschaschel C., Sudzius M., Mischok A., Fröb H., Leo K. (2016) Net gain in small mode volume organic microcavities, Appl. Phys. Lett. 108, 2, 023304. [NASA ADS] [CrossRef] [Google Scholar]
  19. Pfuetzner S., Mickel C., Jankowski J., Hein M., Meiss J., Schuenemann C., Elschner C., Levin A.A., Rellinghaus B., Leo K., Riede M. (2011) The influence of substrate heating on morphology and layer growth in c60: Znpc bulk heterojunction solar cells, Org. Electron. 12, 3, 435–441. [CrossRef] [Google Scholar]
  20. Vandewal K., Benduhn J., Nikolis V. (2018) How to determine optical gaps and voltage losses in organic photovoltaic materials, Sustain. Energy Fuels 2, 3, 538–544. [CrossRef] [Google Scholar]
  21. Koschorreck M., Gehlhaar R., Lyssenko V.G., Swoboda M., Hoffmann M., Leo K. (2005) Dynamics of a high-Q vertical-cavity organic laser, Appl. Phys. Lett. 87, 181108–13. [NASA ADS] [CrossRef] [Google Scholar]
  22. Kozlov V., Bulović V., Burrows P., Baldo M., Khalfin V., Parthasarathy G., Forrest S., You Y., Thompson M. (1998) Study of lasing action based on forster energy transfer in optically pumped organic semiconductor thin films, J. Appl. Phys. 84, 8, 4096–4108. [NASA ADS] [CrossRef] [Google Scholar]
  23. Kallinger C., Riechel S., Holderer O., Lemmer U., Feldmann J., Berleb S., Mückl A., Brüntting W. (2002) Picosecond amplified spontaneous emission bursts from a molecularly doped organic semiconductor, J. Appl. Phys. 91, 10, 6367–6370. [NASA ADS] [CrossRef] [Google Scholar]
  24. Liao K., Hu X., Gan T., Liu Q., Wu Z., Fan C., Feng X., Lu C., Liu Y.-C., Gong Q. (2020) Photonic molecule quantum optics, Adv. Opt. Photon. 12, 1, 60–134. [NASA ADS] [CrossRef] [Google Scholar]
  25. Yeh P., Hendry M. (1990) Optical waves in layered media, Phys. Today 43, 1, 77. [NASA ADS] [CrossRef] [Google Scholar]
  26. Schütte B., Gothe H., Hintschich S.I., Sudzius M., Fröb H., Lyssenko V.G., Leo K. (2008) Continuously tunable laser emission from a wedge-shaped organic microcavity, Appl. Phys. Lett. 92, 163309. [CrossRef] [Google Scholar]
  27. Regensburger A., Bersch C., Miri M.-A., Onishchukov G., Christodoulides D.N., Peschel U. (2012) Parity-time synthetic photonic lattices, Nature 488, 7410, 167–171. [NASA ADS] [CrossRef] [Google Scholar]
  28. Yariv A., Xu Y., Lee R.K., Scherer A. (1999) Coupled-resonator optical waveguide: a proposal and analysis, Opt. Lett. 24, 11, 711–713. [NASA ADS] [CrossRef] [Google Scholar]
  29. Bayindir M., Temelkuran B., Ozbay E. (2000) Tight-binding description of the coupled defect modes in three-dimensional photonic crystals, Phys. Rev. Lett. 84, 10, 2140. [NASA ADS] [CrossRef] [Google Scholar]
  30. Bayindir M., Kural C., Ozbay E. (2001) Coupled optical microcavities in one-dimensional photonic bandgap structures, J. Opt. A: Pure Appl. Opt. 3, 6, 184. [Google Scholar]
  31. Su W.P., Schrieffer J.R., Heeger A.J. (1979) Solitons in polyacetylene, Phys. Rev. Lett. 42, 25, 1698. [NASA ADS] [CrossRef] [Google Scholar]
  32. Yuce C. (2018) Edge states at the interface of non-hermitian systems, Phys. Rev. A 97, 4, 042118. [NASA ADS] [CrossRef] [Google Scholar]
  33. Lin Z., Ramezani H., Eichelkraut T., Kottos T., Cao H., Christodoulides D.N. (2011) Unidirectional invisibility induced by p t-symmetric periodic structures, Phys. Rev. Lett. 106, 21, 213901. [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.