Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 16, Number 1, 2020
Article Number 23
Number of page(s) 11
DOI https://doi.org/10.1186/s41476-020-00145-4
Published online 25 November 2020
  1. Jones RA, Optimization of computer-controlled polishing [J]. Appl. Opt. (1977) 16, 1218–224. https://doi.org/10.1364/AO.16.000218 [NASA ADS] [CrossRef] [Google Scholar]
  2. Nelson J, Sanders GH, The status of the thirty meter telescope project [J]. Ground-based. Airborne Telescopes II (2008) 7012, 70121A. https://doi.org/10.1117/12.788238 [NASA ADS] [CrossRef] [Google Scholar]
  3. Johns M, McCarthy P, Raybould K, Giant Magellan telescope: overview [J]. Ground-based. Airborne Telescopes IV (2012) 8444, 84441H. https://doi.org/10.1117/12.926716 [NASA ADS] [CrossRef] [Google Scholar]
  4. Wagner RE, Shannon RR, Fabrication of aspherics using a mathematical model for material removal [J]. Appl. Opt. (1974) 13, 71683–1689. https://doi.org/10.1364/AO.13.001683 [NASA ADS] [CrossRef] [Google Scholar]
  5. Wang Y, Ni Y, Yu J, Computer-controlled polishing technology for small aspheric lens [J]. Opt. Precis. Eng. (2007) 15, 101527–1533. [Google Scholar]
  6. Wang C, Wang Z, Yang X, et al.Modeling of the static tool influence function of bonnet polishing based on FEA [J]. Int. J. Adv. Manuf. Technol. (2014) 74, 1–4341–349. https://doi.org/10.1007/s00170-014-6004-3 [CrossRef] [Google Scholar]
  7. Dong Z, Cheng H, Tam H, Modified subaperture tool influence functions of a flat-pitch polisher with reverse-calculated material removal rate [J]. Appl. Opt. (2014) 53, 112455–2464. https://doi.org/10.1364/AO.53.002455 [NASA ADS] [CrossRef] [Google Scholar]
  8. Brown NJ, Baker PC, Parks RE, Polishing-to-figuring transition in turned [J]. Optics Contemporary Methods of Optical Fabrication (1982) 306, 58–66. https://doi.org/10.1117/12.932718 [NASA ADS] [CrossRef] [Google Scholar]
  9. Mehta PK, Reid PB, Mathematical model for optical smoothing prediction of high-spatial-frequency surface errors [J]. Optomechanical Engineering and Vibration Control (1999) 3786, 447–460. https://doi.org/10.1117/12.363825 [NASA ADS] [CrossRef] [Google Scholar]
  10. Mehta PK, Hufnagel RE.: Pressure distribution under flexible polishing tools: I. Conventional aspheric optics [J]. Advanc. Opt.Structure. Syst. 1303, 178-88 (1990) [Google Scholar]
  11. Kim DW, Park WH, An HK, Burge JH, Parametric smoothing model for visco-elastic polishing tools [J]. Opt. Express (2010) 18, 2122515–22526. https://doi.org/10.1364/OE.18.022515 [NASA ADS] [CrossRef] [Google Scholar]
  12. Kim, D.W., Martin, H., Burge, J.H.: Control of mid-spatial-frequency errors for large steep aspheric surfaces [J]. Optical Fabrication and Testing. OM4D–OM41D (2012) [Google Scholar]
  13. Shu Y, Nie X, Shi F, Li S, Smoothing evolution model for computer controlled optical surfacing [J]. J. Opt. Technol. (2014) 81, 3164–167. https://doi.org/10.1364/JOT.81.000164 [CrossRef] [Google Scholar]
  14. Dunn CR, Walker DD, Pseudo-random tool paths for CNC sub-aperture polishing and other applications [J]. Opt. Express (2008) 16, 2318942–18949. https://doi.org/10.1364/OE.16.018942 [CrossRef] [Google Scholar]
  15. Tam HY, Cheng H, Dong Z, Peano-like paths for subaperture polishing of optical aspherical surfaces [J]. Appl. Opt. (2013) 52, 153624–3636. https://doi.org/10.1364/AO.52.003624 [NASA ADS] [CrossRef] [Google Scholar]
  16. Nie X, Li S, Shi F, Hu H, Generalized numerical pressure distribution model for smoothing polishing of irregular mid-spatial frequency errors [J]. Appl. Opt. (2014) 53, 61020–1027. https://doi.org/10.1364/AO.53.001020 [CrossRef] [Google Scholar]
  17. Zhang Y, Wei C, Shao J, et al.Correction of mid-spatial-frequency errors by smoothing in spin motion for CCOS [J]. Optical Manufacturing and Testing XI (2015) 9575, 95750D. https://doi.org/10.1117/12.2189050 [NASA ADS] [CrossRef] [Google Scholar]
  18. Kim DW, Burge JH, Rigid conformal polishing tool using non-linear visco-elastic effect [J]. Opt. Express (2010) 18, 32242–2257. https://doi.org/10.1364/OE.18.002242 [NASA ADS] [CrossRef] [Google Scholar]
  19. Nie X, Li S, Hu H, Li Q, Control of mid-spatial frequency errors considering the pad groove feature in smoothing polishing process [J]. Appl. Opt. (2014) 53, 286332–6339. https://doi.org/10.1364/AO.53.006332 [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.