Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 16, Number 1, 2020
|
|
---|---|---|
Article Number | 22 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1186/s41476-020-00144-5 | |
Published online | 07 November 2020 |
- Long D, Early history of the Raman effect. Int. Rev. Phys. Chem. (1988) 7, 4317–349. https://doi.org/10.1080/01442358809353216 [NASA ADS] [CrossRef] [Google Scholar]
- Banwell C, Banwell C, Raman spectroscopy. Fundamentals of Molecular Spectroscopy (1972) New YorkMcGraw-Hill124–154. [Google Scholar]
- Long D, The Raman Effect: a Unified Treatment of The Theory of Raman Scattering by Molecules (2002) New JerseyWileyhttps://doi.org/10.1002/0470845767 [Google Scholar]
- Meksiarun P, Andriana B, Matsuyoshi H, Sato H, Non-invasive quantitative analysis of specific fat accumulation in subcutaneous adipose tissues using Raman spectroscopy. Sci. Rep. (2016) 6, 37068. https://doi.org/10.1038/srep37068 [NASA ADS] [CrossRef] [Google Scholar]
- Vandenabeele P, Tate J, Moens L, Non-destructive analysis of museum objects by fiber-optic Raman spectroscopy. Anal. Bioanal. Chem. (2007) 387, 3813–819. https://doi.org/10.1007/s00216-006-0758-x [CrossRef] [Google Scholar]
- Shipp D, Sinjab F, Notingher I, Raman spectroscopy: techniques and applications in the life sciences. Adv. Opt. Photonics (2017) 9, 2315–428. https://doi.org/10.1364/AOP.9.000315 [CrossRef] [Google Scholar]
- Das R, Agrawal Y, Raman spectroscopy: recent advancements, techniques and applications. Vib. Spectrosc. (2011) 57, 163–176. https://doi.org/10.1016/j.vibspec.2011.08.003 [CrossRef] [Google Scholar]
- Haynes C, McFarland A, Van Duyne R, Surface-enhanced Raman spectroscopy. Anal. Chem. (2005) 77, 17338A–346A. https://doi.org/10.1021/ac053456d [Google Scholar]
- Schlücker S, Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew. Chem. Int. Ed. (2014) 53, 4756–4795. https://doi.org/10.1002/anie.201205748 [CrossRef] [Google Scholar]
- Sharma B, Frontiera R, Henry A, Ringe E, Van Duyne R, SERS: materials, applications, and the future. Mater. Today (2012) 15, 1–216–25. https://doi.org/10.1016/S1369-7021(12)70017-2 [CrossRef] [Google Scholar]
- Ding S, You E, Tian Z, Moskovits M, Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem. Soc. Rev. (2017) 46, 4042–4076. https://doi.org/10.1039/C7CS00238F [CrossRef] [Google Scholar]
- Kneipp K, Moskovits M, Kneipp H, Surface-Enhanced Raman Scattering (2006) BerlinSpringer-Verlaghttps://doi.org/10.1007/3-540-33567-6 [CrossRef] [Google Scholar]
- Le Ru E, Etchegoin P, Principles of Surface-Enhanced Raman Spectroscopy (2008) AmsterdamElsevier Science [Google Scholar]
- Henry A, Sharma B, Cardinal M, Kurouski D, Van Duyne R, Surface-enhanced Raman spectroscopy biosensing: in vivo diagnostics and multimodal imaging. Anal. Chem. (2016) 88, 6638–6647. https://doi.org/10.1021/acs.analchem.6b01597 [CrossRef] [Google Scholar]
- Tripp R, Dluhy R, Zhao Y, Novel nanostructures for SERS biosensing. Nano Today (2008) 3, 3–431–37. https://doi.org/10.1016/S1748-0132(08)70042-2 [Google Scholar]
- Bantz K, Meyer A, Wittenberg N, Im H, Kurtulus Ö, Lee S, Lindquist N, Oh SH, Haynes C, Recent progress in SERS biosensing. Phys. Chem. Chem. Phys. (2011) 13, 11551–11567. https://doi.org/10.1039/c0cp01841d [NASA ADS] [CrossRef] [Google Scholar]
- Le Ru E, Etchegoin P, Single-molecule surface-enhanced Raman spectroscopy. Annu. Rev. Phys. Chem. (2012) 63, 65–87. https://doi.org/10.1146/annurev-physchem-032511-143757 [NASA ADS] [CrossRef] [Google Scholar]
- Wang Y, Irudayaraj J, Surface-enhanced Raman spectroscopy at single-molecule scale and its implications in biology. Phil. Trans. R Soc. B (2013) 368, 20120026. https://doi.org/10.1098/rstb.2012.0026 [CrossRef] [Google Scholar]
- Lee H, Jin S, Kim H, Suh Y, Single-molecule surface-enhanced Raman spectroscopy: a perspective on the current status. Phys. Chem. Chem. Phys. (2013) 15, 5276–5287. https://doi.org/10.1039/c3cp44463e [NASA ADS] [CrossRef] [Google Scholar]
- Zrimsek A, Chiang N, Mattei M, Zaleski S, McAnally M, Chapman C, Henry AI, Schatz G, Van Duyne R, Single-molecule chemistry with surface- and tip-enhanced Raman spectroscopy. Chem. Rev. (2017) 117, 7583–7613. https://doi.org/10.1021/acs.chemrev.6b00552 [CrossRef] [Google Scholar]
- Kumar G, Plasmonic nano-architectures for surface enhanced Raman scattering: a review. J. Nanophotonics (2012) 6, 1064503. https://doi.org/10.1117/1.JNP.6.064503 [CrossRef] [Google Scholar]
- Sharma B, Cardinal M, Kleinman S, Greeneltch N, Frontiera R, Blaber M, Schatz G, Van Duyne R, High-performance SERS substrates: advances and challenges. MRS Bull. (2013) 38, 8615–624. https://doi.org/10.1557/mrs.2013.161 [Google Scholar]
- Kleinman S, Frontiera R, Henry A-I, Dieringer J, Van Duyne R, Creating, characterizing, and controlling chemistry with SERS hot spots. Phys. Chem. Chem. Phys. (2013) 15, 21–36. https://doi.org/10.1039/C2CP42598J [NASA ADS] [CrossRef] [Google Scholar]
- Dutta A, Matikainen A, Andoh S, Nuutinen T, SERS activity of photoreduced silver chloride crystals. AIP Conf. Proc. (2020) 2220, 050004. https://doi.org/10.1063/5.0001101 [NASA ADS] [CrossRef] [Google Scholar]
- Ye J, Wen F, Sobhani H, Lassiter J, Dorpe P, Nordlander P, Halas N, Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS. Nano Lett. (2012) 12, 31660–1667. https://doi.org/10.1021/nl3000453 [NASA ADS] [CrossRef] [Google Scholar]
- Dutta A, Alam K, Nuutinen T, Hulkko E, Karvinen P, Kuittinen M, Toppari JJ, Vartiainen E, Influence of Fano resonance on SERS enhancement in Fano-plasmonic oligomers. Opt. Express (2019) 27, 2130031–30043. https://doi.org/10.1364/OE.27.030031 [CrossRef] [Google Scholar]
- Dutta A, Vartiainen E, Spatial localization of hotspots in Fano-resonant plasmonic oligomers for surface-enhanced coherent anti-stokes Raman scattering. J. Eur. Opt. Soc.-Rapid Publ. (2020) 16, 8. https://doi.org/10.1186/s41476-020-00128-5 [CrossRef] [Google Scholar]
- Romanato F, Pilot R, Massari M, Ongarello T, Pirruccio G, Zilio P, Ruffato G, Carli M, Sammito D, Giorgis V, Garoli D, Signorini R, Schiavuta P, Bozio R, Design, fabrication and characterization of plasmonic gratings for SERS. Microelectron. Eng. (2011) 88, 82717–2720. https://doi.org/10.1016/j.mee.2011.02.052 [Google Scholar]
- Kalachyova Y, Mares D, Lyutakov O, Kostejn M, Lapcak L, Svorcik V, Surface plasmon polaritons on silver gratings for optimal SERS response. J. Phys. Chem. C (2015) 119, 179506–9512. https://doi.org/10.1021/acs.jpcc.5b01793 [NASA ADS] [CrossRef] [Google Scholar]
- Iqbal T, Ashfaq Z, Afsheen S, Ijaz M, Khan M, Rafique M, Nabi G, Surface-enhanced Raman scattering (SERS) on 1D nano-gratings. Plasmonics (2020) 15, 1053–1059. https://doi.org/10.1007/s11468-019-01114-5 [Google Scholar]
- Gillibert R, Sarkar M, Bryche J, Yasukuni R, Moreau J, Besbes M, Barbillon G, Bartenlian B, Canva M, de la Chapelle M, Directional surface enhanced Raman scattering on gold nano-gratings. Nanotechnology (2016) 27, 115202. https://doi.org/10.1088/0957-4484/27/11/115202 [Google Scholar]
- Zanjani N, Shayegannia M, Prinja R, Montazeri A, Mohammadzadeh A, Dixon K, Zhu S, Selvaganapathy P, Zavodni A, Matsuura N, Kherani N, Multiwavelength surface-enhanced Raman spectroscopy using rainbow trapping in width-graded plasmonic gratings. Adv. Opt. Mater. (2018) 6, 1701136. https://doi.org/10.1002/adom.201701136 [CrossRef] [Google Scholar]
- Yaremchuk I, Petrovska H, Karelko I, Fitio V, Bobitski Y, Optimization of the grating-based structures for the efficient SERS substrates. Proc. IEEE ELNANO (2017) 37, 119–123. [Google Scholar]
- Xiao C, Chen Z, Qin M, Zhang D, Wu H, SERS polarization-independent performance of two-dimensional sinusoidal silver grating. Appl. Phys. Lett. (2018) 113, 171604. https://doi.org/10.1063/1.5048826 [NASA ADS] [CrossRef] [Google Scholar]
- Ross M, Mirkin C, Schatz G, Optical properties of one-, two-, and three dimensional arrays of plasmonic nanostructures. J. Phys. Chem. C (2016) 120, 2816–830. https://doi.org/10.1021/acs.jpcc.5b10800 [CrossRef] [Google Scholar]
- Kahl M, Voges E, Analysis of plasmon resonance and surface-enhanced Raman scattering on periodic silver structures. Phys. Rev. B (2000) 61, 2014078. https://doi.org/10.1103/PhysRevB.61.14078 [NASA ADS] [CrossRef] [Google Scholar]
- Raether H, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (1988) BerlinSpringer-Verlaghttps://doi.org/10.1007/BFb0048317 [CrossRef] [Google Scholar]
- Chan C, Li J, Ong H, Xu J, Waye M, Kumar C, Angle-resolved surface-enhanced Raman scattering. Raman Spectroscopy for Nanomaterials Characterization (2012) BerlinSpringer-Verlag Berlin Heidelberg1–32. [Google Scholar]
- Baltog I, Primeau N, Reinisch R, Coutaz J, Surface enhanced Raman scattering on silver grating: optimized antennalike gain of the stokes signal of 104. Appl. Phys. Lett. (1995) 66, 1187. https://doi.org/10.1063/1.113852 [NASA ADS] [CrossRef] [Google Scholar]
- Baltog I, Primeau N, Reinisch R, Coutaz J, Observation of stimulated surface-enhanced Raman scattering through grating excitation of surface plasmons. J. Opt. Soc. Am. B (1996) 13, 4656–660. https://doi.org/10.1364/JOSAB.13.000656 [NASA ADS] [CrossRef] [Google Scholar]
- Bog U, Huska K, Maerkle F, Nesterov-Mueller A, Lemmer U, Mappes T, Design of plasmonic grating structures towards optimum signal discrimination for biosensing applications. Opt. Express (2012) 20, 1011357–11369. https://doi.org/10.1364/OE.20.011357 [NASA ADS] [CrossRef] [Google Scholar]
- Collin S, Nanostructure arrays in free-space: optical properties and applications. Rep. Prog. Phys. (2014) 77, 126402. https://doi.org/10.1088/0034-4885/77/12/126402 [NASA ADS] [CrossRef] [Google Scholar]
- Guselnikova O, Svorcik V, Lyutakov O, Chehimi M, Postnikov P, Preparation of selective and reproducible SERS sensors of Hg2+ ions via a sunlight-induced thiol-yne reaction on gold gratings. Sensors (2019) 19, 92110. https://doi.org/10.3390/s19092110 [NASA ADS] [CrossRef] [Google Scholar]
- Guselnikova O, Dvorankova B, Kakisheva K, Kalachyova Y, Postnikov P, Svorcik V, Lyutakov O, Rapid SERS-based recognition of cell secretome on the folic acid-functionalized gold gratings. Anal. Bioanal. Chem. (2019) 411, 3309–3319. https://doi.org/10.1007/s00216-019-01801-6 [CrossRef] [Google Scholar]
- Dhawan A, Du Y, Batchelor D, Wang H, Leonard D, Misra V, Ozturk M, Gerhold M, Vo-Dinh T, Hybrid top-down and bottom-up fabrication approach for wafer-scale plasmonic nanoplatforms. Small (2011) 7, 727–731. https://doi.org/10.1002/smll.201002186 [CrossRef] [Google Scholar]
- Kalachyova Y, Mares D, Jerabek V, Elashnikov R, Svorcik V, Lyutakov O, Longtime stability of silver-based SERS substrate in the environment and (bio) environment with variable temperature and humidity. Sens. Actuator A Phys. (2019) 285, 566–572. https://doi.org/10.1016/j.sna.2018.11.037 [CrossRef] [Google Scholar]
- Deng X, Braun G, Liu S, Sciortino P, Koefer B, Tombler T, Moskovits M, Single-order, subwavelength resonant nanograting as a uniformly hot substrate for surface-enhanced Raman spectroscopy. Nano Lett. (2010) 10, 51780–1786. https://doi.org/10.1021/nl1003587 [NASA ADS] [CrossRef] [Google Scholar]
- Kocabas A, Ertas G, Senlik S, Aydinli A, Plasmonic band gap structures for surface-enhanced Raman scattering. Opt. Express (2008) 16, 1712469–12477. https://doi.org/10.1364/OE.16.012469 [NASA ADS] [CrossRef] [Google Scholar]
- Yang Z, Li Q, Ruan F, Li Z, Ren B, Xu H, Tian Z, FDTD for plasmonics: applications in enhanced Raman spectroscopy. Chin. Sci. Bull. (2010) 55, 2635–2642. https://doi.org/10.1007/s11434-010-4044-0 [NASA ADS] [CrossRef] [Google Scholar]
- Taflove A, Hagness S, Computational Electrodynamics: the Finite-Difference Time-Domain Method (2005) BostonArtech House [Google Scholar]
- Johnson S, Oskooi A, Taflove A, Advances in FDTD Computational Electrodynamics: Photonics and Nanotechnology (2013) BostonArtech House [Google Scholar]
- Radu A, Kuellmer M, Giese B, Huebner U, Weber K, Cialla-May D, Popp J, Surface-enhanced Raman spectroscopy (SERS) in food analytics: detection of vitamins B2 and B12 in cereals. Talanta (2016) 160, 289–297. https://doi.org/10.1016/j.talanta.2016.07.027 [CrossRef] [Google Scholar]
- Lumerical FDTD Solutions 2019a. ANSYS Inc. (formerly acquired by Lumerical Inc.), Canonsburg. (2020). https://www.lumerical.com/products/fdtd/. Accessed 10 July 2020 [Google Scholar]
- Johnson P, Christy R, Optical constants of the noble metals. Phys. Rev. B (1972) 6, 4370–4379. https://doi.org/10.1103/PhysRevB.6.4370 [CrossRef] [Google Scholar]
- Shen B, Linko V, Tapio K, Pikker S, Lemma T, Gopinath A, Gothelf K, Kostiainen M, Toppari JJ, Plasmonic nanostructures through DNA-assisted lithography. Sci. Adv. (2018) 4, 2eaap8978. https://doi.org/10.1126/sciadv.aap8978 [CrossRef] [Google Scholar]
- OriginPro 2017. OriginLab Corp., Northampton. (2020). https://www.originlab.com/. Accessed 10 July 2020 [Google Scholar]
- Dendisová-Vyškovská M, Kokaislová A, Oncák M, Matejka P, SERS and in situ SERS spectroscopy of riboflavin adsorbed on silver, gold and copper substrates: elucidation of variability of surface orientation based on both experimental and theoretical approach. J. Mol. Struct. (2013) 1038, 19–28. https://doi.org/10.1016/j.molstruc.2013.01.023 [CrossRef] [Google Scholar]
- Liu F, Gu H, Lin Y, Qi Y, Dong X, Gao J, Cai T, Surface-enhanced Raman scattering study of riboflavin on borohydride-reduced silver colloids: dependence of concentration, halide anions and pH values. Spectrochim. Acta A (2012) 85, 1111–119. [Google Scholar]
- Le Ru E, Blackie E, Meyer M, Etchegoin P, Surface enhanced Raman scattering enhancement factors: a comprehensive study. J. Phys. Chem. C (2007) 111, 3713794–13803. https://doi.org/10.1021/jp0687908 [CrossRef] [Google Scholar]
- Langer J, et al.Present and future of surface-enhanced Raman scattering. ACS Nano (2020) 14, 128–117. https://doi.org/10.1021/acsnano.9b04224 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.