Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 16, Number 1, 2020
Article Number 18
Number of page(s) 8
DOI https://doi.org/10.1186/s41476-020-00139-2
Published online 11 July 2020
  1. Shore B. W., Bergmann K., Kuhn A., Schiemann S., Oreg J., Eberly J. H., Laser-induced population transfer in multistate systems: A comparative study. Phys. Rev. A (1992) 45, 5297–5300. https://doi.org/10.1103/PhysRevA.45.5297https://doi.org/10.1103/PhysRevA.45.5297 [CrossRef] [Google Scholar]
  2. Melinger J., Gandhi S. R., Hariharan A., Goswami D., Warren W., Adiabatic population transfer with frequency-swept laser pulses. J. Chem. Phys. (1994) 101, 86439–6454. https://doi.org/10.1063/1.468368https://doi.org/10.1063/1.468368 [NASA ADS] [CrossRef] [Google Scholar]
  3. Vitanov N., Halfmann T., Shore B., Bergmann K., Laser-induced population transfer by adiabatic passage techniques. Annu. Rev. Phys. Chem. (2001) 52, 763–809. https://doi.org/10.1146/annurev.physchem.52.1.763https://doi.org/10.1146/annurev.physchem.52.1.76 [NASA ADS] [CrossRef] [Google Scholar]
  4. Malinovsky V., Krause J., General theory of population transfer by adiabatic rapid passage with intense, chirped laser pulses. Eur. Phys. J. D (2001) 14, 2147–155. https://doi.org/10.1007/s100530170212https://doi.org/10.1007/s10053017021 [NASA ADS] [CrossRef] [Google Scholar]
  5. Kotru K., Butts D. L., Kinast J. M., Stoner R. E., Large-area atom interferometry with frequency-swept Raman adiabatic passage. Phys. Rev. Lett. (2015) 115, 103001. https://doi.org/10.1103/PhysRevLett.115.103001https://doi.org/10.1103/PhysRevLett.115.103001 [NASA ADS] [CrossRef] [Google Scholar]
  6. Kotru K., Brown J. M., Butts D. L., Kinast J. M., Stoner R. E., Robust Ramsey sequences with Raman adiabatic rapid passage. Phys. Rev. A (2014) 90, 053611. https://doi.org/10.1103/PhysRevA.90.053611https://doi.org/10.1103/PhysRevA.90.053611 [NASA ADS] [CrossRef] [Google Scholar]
  7. Beterov I. I., Saffman M., Yakshina E. A., Zhukov V. P., Tretyakov D. B., Entin V. M., Ryabtsev I. I., Mansell C. W., MacCormick C., Bergamini S., Fedoruk M. P., Quantum gates in mesoscopic atomic ensembles based on adiabatic passage and Rydberg blockade. Phys. Rev. A (2013) 88, 010303. https://doi.org/10.1103/PhysRevA.88.010303https://doi.org/10.1103/PhysRevA.88.010303 [NASA ADS] [CrossRef] [Google Scholar]
  8. Hardy C. J., Edelstein W. A., Vatis D., Efficient adiabatic fast passage for NMR population inversion in the presence of radiofrequency field inhomogeneity and frequency offsets. J. Magn. Reson. (1986) 66, 3470–482. https://doi.org/10.1016/0022-2364(86)90190-3 [NASA ADS] [Google Scholar]
  9. Laane J., Frontiers and Advances in Molecular Spectroscopy (2017) AmsterdamElsevier Sciencehttps://books.google.co.jp/books?id=DeDWDgAAQBAJ. Accessed 19 June 2020 [Google Scholar]
  10. Schmidgall E. R., Eastham P. R., Phillips R. T., Population inversion in quantum dot ensembles via adiabatic rapid passage. Phys. Rev. B (2010) 81, 195306. https://doi.org/10.1103/PhysRevB.81.195306https://doi.org/10.1103/PhysRevB.81.195306 [CrossRef] [Google Scholar]
  11. Feynman R. P., Vernon Jr F. L., Hellwarth R. W., Geometrical representation of the Schrödinger equation for solving maser problems. J. Appl. Phys. (1957) 28, 149–52. https://doi.org/10.1063/1.1722572https://doi.org/10.1063/1.1722572 [CrossRef] [Google Scholar]
  12. Torrontegui E., Ibanez S., Martinez-Garaot S., Modugno M., del Campo A., Guery-Odelin D., Ruschhaupt A., Chen X., Gonzalo Muga J., Shortcuts to adiabaticity. Advances in Atomic Molecular and Optical Physics (2013) 62, 117–169. https://doi.org/10.1016/B978-0-12-408090-4.00002-5https://doi.org/10.1016/B978-0-12-408090-4.00002-5 [NASA ADS] [CrossRef] [Google Scholar]
  13. Chen X., Ruschhaupt A., Schmidt S., del Campo A., Guéry-Odelin D., Muga J. G., Fast optimal frictionless atom cooling in harmonic traps: Shortcut to adiabaticity. Phys. Rev. Lett. (2010) 104, 063002. https://doi.org/10.1103/PhysRevLett.104.063002https://doi.org/10.1103/PhysRevLett.104.063002 [NASA ADS] [CrossRef] [Google Scholar]
  14. Chen X., Lizuain I., Ruschhaupt A., Guéry-Odelin D., Muga J. G., Shortcut to adiabatic passage in two- and three-level atoms. Phys. Rev. Lett. (2010) 105, 123003. https://doi.org/10.1103/PhysRevLett.105.123003https://doi.org/10.1103/PhysRevLett.105.123003 [NASA ADS] [CrossRef] [Google Scholar]
  15. Chen X., Muga J. G., Engineering of fast population transfer in three-level systems. Phys. Rev. A (2012) 86, 033405. https://doi.org/10.1103/PhysRevA.86.033405https://doi.org/10.1103/PhysRevA.86.033405 [NASA ADS] [CrossRef] [Google Scholar]
  16. Berry M. V., Transitionless quantum driving. J. Phys. A Math. Theor. (2009) 42, 36365303. https://doi.org/10.1088/1751-8113/42/36/365303https://doi.org/10.1088/1751-8113/42/36/365303 [NASA ADS] [CrossRef] [Google Scholar]
  17. del Campo A., Shortcuts to adiabaticity by counterdiabatic driving. Phys. Rev. Lett. (2013) 111, 100502. https://doi.org/10.1103/PhysRevLett.111.100502https://doi.org/10.1103/PhysRevLett.111.100502 [CrossRef] [Google Scholar]
  18. Masuda S., Rice S. A., Fast-forward assisted STIRAP. J. Phys. Chem. A (2015) 119, 143479–3487. https://doi.org/10.1021/acs.jpca.5b00525https://doi.org/10.1021/acs.jpca.5b00525. PMID: 25775133 [NASA ADS] [CrossRef] [Google Scholar]
  19. Bason M. G., Viteau M., Malossi N., Huillery P., Arimondo E., Ciampini D., Fazio R., Giovannetti V., Mannella R., Morsch O., High-fidelity quantum driving. Nat. Phys. (2012) 8, 2147–152. https://doi.org/10.1038/nphys2170https://doi.org/10.1038/NPHYS217 [NASA ADS] [CrossRef] [Google Scholar]
  20. Zhang J., Shim J. H., Niemeyer I., Taniguchi T., Teraji T., Abe H., Onoda S., Yamamoto T., Ohshima T., Isoya J., Suter D., Experimental implementation of assisted quantum adiabatic passage in a single spin. Phys. Rev. Lett. (2013) 110, 240501. https://doi.org/10.1103/PhysRevLett.110.240501https://doi.org/10.1103/PhysRevLett.110.240501 [NASA ADS] [CrossRef] [Google Scholar]
  21. An, S., Lv, D., del Campo, A., Kim, K.: Shortcuts to adiabaticity by counterdiabatic driving for trapped-ion displacement in phase space. Nat. Commun. 7 (2016). https://doi.org/10.1038/ncomms1299. [Google Scholar]
  22. Du, Y. -X., Liang, Z. -T., Li, Y. -C., Yue, X. -X., Lv, Q. -X., Huang, W., Chen, X., Yan, H., Zhu, S. -L.: Experimental realization of stimulated Raman shortcut-to-adiabatic passage with cold atoms. Nat. Commun. 7 (2016). https://doi.org/10.1038/ncomms1247. [Google Scholar]
  23. Guery-Odelin, D., Ruschhaupt, A., Kiely, A., Torrontegui, E., Martinez-Garaot, S., Muga, J. G.: Shortcuts to adiabaticity: Concepts, methods, and applications. Rev. Mod. Phys. 91(4) (2019). https://doi.org/10.1103/RevModPhys.91.04500. [Google Scholar]
  24. Ibanez S., Martinez-Garaot S., Chen X., Torrontegui E., Muga J. G., Shortcuts to adiabaticity for non-Hermitian systems. Phys. Rev. A (2011) 84, 023415. https://doi.org/10.1103/PhysRevA.84.023415https://doi.org/10.1103/PhysRevA.84.023415 [NASA ADS] [CrossRef] [Google Scholar]
  25. Torosov B. T., Della Valle G., Longhi S., Non-Hermitian shortcut to adiabaticity. Phys. Rev. A (2013) 87, 052502. https://doi.org/10.1103/PhysRevA.87.052502https://doi.org/10.1103/PhysRevA.87.052502 [NASA ADS] [CrossRef] [Google Scholar]
  26. Torosov B. T., Della Valle G., Longhi S., Non-Hermitian shortcut to stimulated Raman adiabatic passage. Phys. Rev. A (2014) 89, 063412. https://doi.org/10.1103/PhysRevA.89.063412https://doi.org/10.1103/PhysRevA.89.063412 [NASA ADS] [CrossRef] [Google Scholar]
  27. Bender C. M., Boettcher S., Real Spectra in Non-Hermitian Hamiltonians Having Formula Symmetry. Phys. Rev. Lett. (1998) 80, 5243–5246. https://doi.org/10.1103/PhysRevLett.80.5243 [CrossRef] [Google Scholar]
  28. Bender C. M., Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. (2007) 70, 6947–1018. https://doi.org/10.1088/0034-4885/70/6/R03https://doi.org/10.1088/0034-4885/70/6/r03 [NASA ADS] [CrossRef] [Google Scholar]
  29. Uzdin R., Guenther U., Rahav S., Moiseyev N., Time-dependent Hamiltonians with 100% evolution speed efficiency. J. Phys. A Math. Theor. (2012) 45, 41415304. https://doi.org/10.1088/1751-8113/45/41/415304https://doi.org/10.1088/1751-8113/45/41/415304 [NASA ADS] [CrossRef] [Google Scholar]
  30. Reyes S. A., Olivares F. A., Morales-Molina L., Landau-Zener-Stuckelberg interferometry in PT-symmetric optical waveguides. J. Phys. A Math. Theor. (2012) 45, 44444027. https://doi.org/10.1088/1751-8113/45/44/444027https://doi.org/10.1088/1751-8113/45/44/444027 [NASA ADS] [CrossRef] [Google Scholar]
  31. Uzdin R., Moiseyev N., Rapid azimuthal rotation in the Hermitian and non-Hermitian Landau–Zener problem. J. Phys. A Math. Theor. (2012) 45, 44444033. https://doi.org/10.1088/1751-8113/45/44/444033https://doi.org/10.1088/1751-8113/45/44/444033 [NASA ADS] [CrossRef] [Google Scholar]
  32. Ibanez S., Muga J. G., Adiabaticity condition for non-Hermitian Hamiltonians. Phys. Rev. A (2014) 89, 033403. https://doi.org/10.1103/PhysRevA.89.033403https://doi.org/10.1103/PhysRevA.89.033403 [NASA ADS] [CrossRef] [Google Scholar]
  33. Marr, C., Beige, A., Rempe, G.: Entangled-state preparation via dissipation-assisted adiabatic passages. Phys. Rev. A. 68(3) (2003). https://doi.org/10.1103/PhysRevA.68.03381. [Google Scholar]
  34. Martinez-Garaot S., Tseng S. -Y., Muga J. G., Compact and high conversion efficiency mode-sorting asymmetric Y junction using shortcuts to adiabaticity. Opt. Lett. (2014) 39, 82306–2309. https://doi.org/10.1364/OL.39.002306https://doi.org/10.1364/OL.39.00230 [NASA ADS] [CrossRef] [Google Scholar]
  35. Tseng S. -Y., Wen R. -D., Chiu Y. -F., Chen X., Short and robust directional couplers designed by shortcuts to adiabaticity. Opt. Express (2014) 22, 1618849–18859. https://doi.org/10.1364/OE.22.018849https://doi.org/10.1364/OE.22.018849 [NASA ADS] [CrossRef] [Google Scholar]
  36. Rueter C. E., Makris K. G., El-Ganainy R., Christodoulides D. N., Segev M., Kip D., Observation of parity-time symmetry in optics. Nat. Phys. (2010) 6, 3192–195. https://doi.org/10.1038/nphys1515https://doi.org/10.1038/NPHYS151 [CrossRef] [Google Scholar]
  37. Guo A., Salamo G. J., Duchesne D., Morandotti R., Volatier-Ravat M., Aimez V., Siviloglou G. A., Christodoulides D. N., Observation of Formula -symmetry breaking in complex optical potentials. Phys. Rev. Lett. (2009) 103, 093902. https://doi.org/10.1103/PhysRevLett.103.093902 [CrossRef] [Google Scholar]
  38. Vasilev G. S., Vitanov N. V., Coherent excitation of a two-state system by a Gaussian field. Phys. Rev. A (2004) 70, 053407. https://doi.org/10.1103/PhysRevA.70.053407https://doi.org/10.1103/PhysRevA.70.053407 [NASA ADS] [CrossRef] [Google Scholar]
  39. Allen, L., Eberly, J. H.: Optical Resonance and Two-level Atoms, Dover books on physics and chemistry. Dover, New York (1987). https://books.google.co.jp/books?id=1q0ae-XNmWwC. Accessed 19 June 2020. [Google Scholar]
  40. Okamoto, K.: Fundamentals of Optical Waveguides, Electronics & Electrical. Elsevier Science, Amsterdam (2006). https://books.google.co.jp/books?id=0SNXgnx6un4C. Accessed 19 June 2020. [Google Scholar]
  41. Yariv A., Coupled-mode theory for guided-wave optics. IEEE J. Quantum Electron. (1973) 9, 9919–933. https://doi.org/10.1109/JQE.1973.1077767https://doi.org/10.1109/JQE.1973.1077767 [CrossRef] [Google Scholar]
  42. Syahriar A., Schneider V. M., Al-Bader S., The design of mode evolution couplers. J. Light. Technol. (1998) 16, 101907–1914. https://doi.org/10.1109/50.721079https://doi.org/10.1109/50.721079 [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.