Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 16, Number 1, 2020
Article Number 11
Number of page(s) 13
DOI https://doi.org/10.1186/s41476-020-00132-9
Published online 11 May 2020
  1. Elgala, H., Mesleh, R., Haas, H.: Indoor optical wireless communication: Potential and state-of-the-art. IEEE Commun. Mag. 2011(49), 56–62. https://doi.org/10.1109/MCOM.2011.6011734. [Google Scholar]
  2. Minh, H. L., Ghassemlooy, Z., O’Brien, D., Faulkner, G.: Indoor Gigabit optical wireless communications: Challenges and possibilities. In: Proc. 12th Int. Conf. Transp. Opt. Netw., pp. 1–6 (2010). https://doi.org/10.1109/ICTON.2010.5549136. [Google Scholar]
  3. Uddin, M. S., Chowdhury, M. Z., Jang, Y. M.: Priority-based resource allocation scheme for visible light communication. In: Proc. 2nd Int. Conf. Ubiquit. Future Netw, pp. 247–250 (2010). https://doi.org/10.1109/ICUFN.2010.5547195. [Google Scholar]
  4. Pan G., Tang C., Zhang X., Li T., Weng Y., Chen Y., Physicallayer security over non-small-scale fading channels. IEEE Trans. Veh. Technol. (2016) 65, 1326– 1339. https://doi.org/10.1109/TVT.2015.2412140 https://doi.org/10.1109/TVT.2015.2412140 [CrossRef] [Google Scholar]
  5. Komine T., Nakagawa M., Fundamental analysis for visible-light communication system using LED lights. IEEE Trans. Consum. Electron. (2004) 50, 100– 107. https://doi.org/10.1109/TCE.2004.1277847 https://doi.org/10.1109/TCE.2004.1X277847 [CrossRef] [Google Scholar]
  6. Nuwanpriya A., Ho S. w., Chen C. S., Indoor MIMO visible light communications: Novel angle diversity receivers for mobile users. IEEE J. Sel. Areas Commun. (2015) 33, 1780– 1792. https://doi.org/10.1109/JSAC.2015.2432514 https://doi.org/10.1109/JSAC.2015.2432514 [CrossRef] [Google Scholar]
  7. Zeng L., O’Brien D., Minh H., Faulkner G., Lee K., Jung D., Oh Y., Won E. T., High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting. IEEE J. Sel. Areas Commun. (2009) 27, 1654– 1662. https://doi.org/10.1109/JSAC.2009.091215 https://doi.org/10.1109/JSAC.2009.091215 [CrossRef] [Google Scholar]
  8. Lapidoth A., Moser S., Wigger M., On the capacity of free-space optical intensity channels. IEEE Trans. Inf. Theory (2009) 55, 4449– 4461. https://doi.org/10.1109/TIT.2009.2027522 https://doi.org/10.1109/TIT.2009.2027522 [CrossRef] [Google Scholar]
  9. Shannon C. E., Communication theory of secrecy systems. Bell Syst. Tech. J. (1949) 28, 656– 715. https://doi.org/10.1002/j.1538-7305.1949.tb00928.x https://doi.org/10.1002/j.1538-7305.1949.tb00928.x [CrossRef] [Google Scholar]
  10. Wyner A. D., The wire-tap channel. Bell Syst. Tech. J (1975) 54, 1355– 1387. https://doi.org/10.1002/j.1538-7305.1975.tb02040.x https://doi.org/10.1002/j.1538-7305.1975.tb02040.x [CrossRef] [Google Scholar]
  11. Leung-Yan-Cheong S., Hellman M., The Gaussian wire-tap channel. IEEE Trans. Inf. Theory (1978) 24, 451– 456. https://doi.org/10.1109/TIT.1978.1055917 https://doi.org/10.1109/tit.1978.1055917 [CrossRef] [Google Scholar]
  12. Shafiee S., Liu N., Ulukus S., Towards the secrecy capacity of the Gaussian MIMO wire-tap channel: The 2-2-1 channel. IEEE Trans. Inf. Theory (2009) 55, 4033– 4039. https://doi.org/10.1109/TIT.2009.2025549 https://doi.org/10.1109/tit.2009.2025549 [CrossRef] [Google Scholar]
  13. Liu R., Poor H., Secrecy capacity region of a multiple-antenna Gaussian broadcast channel with confidential messages. IEEE Trans. Inf. Theory (2009) 55, 1235– 1249. https://doi.org/10.1109/TIT.2008.2011448 https://doi.org/10.1109/TIT.2008.2011448 [CrossRef] [Google Scholar]
  14. Liu T., Shamai S., A note on the secrecy capacity of the multipleantenna wiretap channel. IEEE Trans. Inf. Theory (2009) 55, 2547– 2553. https://doi.org/10.1109/TIT.2009.2018322 https://doi.org/10.1109/tit.2009.2018322 [CrossRef] [Google Scholar]
  15. Khisti A., Wornell G. W., Secure transmission with multiple antennas-Part II: The MIMOME wiretap channel. IEEE Trans. Inf. Theory (2010) 56, 5515– 5532. https://doi.org/10.1109/TIT.2010.2068852 https://doi.org/10.1109/tit.2010.2068852 [CrossRef] [Google Scholar]
  16. Oggier F., VHassibi B., The secrecy capacity of the MIMO wiretap channel. IEEE Trans. Inf. Theory (2011) 57, 4961– 4972. https://doi.org/10.1109/TIT.2011.2158487 https://doi.org/10.1109/ISIT.2008.4595041 [CrossRef] [Google Scholar]
  17. Shannon C. E., A mathematical theory of communication. Bell Syst. Tech. J. (1948) 27, 379– 423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x https://doi.org/10.1002/j.1538-7305.1948.tb00917.x [CrossRef] [Google Scholar]
  18. Farid A. A., Hranilovic S., Capacity bounds for wireless optical intensity channels with Gaussian noise. IEEE Trans. Inf. Theory (2010) 56, 6066– 6077. https://doi.org/10.1109/TIT.2010.2080470 [CrossRef] [Google Scholar]
  19. Moser S. M., Capacity results of an optical intensity channel with inputdependent Gaussian noise. IEEE Trans. Inf. Theory (2012) 58, 207– 223. https://doi.org/10.1109/TIT.2011.2169541 https://doi.org/10.1109/tit.2010.2080470 [CrossRef] [Google Scholar]
  20. [, 12] Wang, J. B., Hu, Q. S., Wang, J., Chen, M., Wang, J. Y.: Tight bounds on channel capacity for dimmable visible light communications. J. Lightw. Technol.31, 3771–3779 (2013). https://doi.org/10.1109/JLT.2013.2286088. [Google Scholar]
  21. Chaaban A., Morvan J., Alouini M., Free-space optical communications: Capacity bounds, approximations, and a new sphere-packing perspective. IEEE Trans. Commun. (2016) 64, 1176– 1191. https://doi.org/10.1109/TCOMM.2016.2524569 https://doi.org/10.1109/TCOMM.2016.2524569 [CrossRef] [Google Scholar]
  22. Jiang R., Wang Z., Wang Q., A tight upper bound on channel capacity for visible light communications. IEEE Commu. Lett. (2016) 20, 97– 100. https://doi.org/10.1109/LCOMM.2015.2497694 https://doi.org/10.1109/LCOMM.2015.2497694 [CrossRef] [Google Scholar]
  23. Mostafa A., Lampe L., Physical-layer security for MISO visible light communication channels. IEEE J. Sel. Areas Commun. (2015) 33, 1806– 1818. https://doi.org/10.1109/JSAC.2015.2432513 https://doi.org/10.1109/JSAC.2015.2432513 [CrossRef] [Google Scholar]
  24. Mukherjee A., Secret-key agreement for security in multi-emitter visible light communication systems. IEEE Commun. Lett. (2016) 20, 1361– 1364. https://doi.org/10.1109/LCOMM.2016.2558562 [Google Scholar]
  25. Shen, H., Deng, Y., Xu, W., Zhao, C.: Secrecy-oriented transmitter optimization for visible light communication systems. IEEE Photon. J.8 (2016). https://doi.org/10.1109/jphot.2016.2598684. [Google Scholar]
  26. Pan G., Ye J., Ding Z., On Secure VLC Systems With Spatially Random Terminals. IEEE Commun. Lett. (2017) 21, 492– 495. https://doi.org/10.1109/LCOMM.2016.2643632 https://doi.org/10.1109/LCOMM.2016.2643632 [CrossRef] [Google Scholar]
  27. Bloch M., Barros J., Physical-Layer Security: From Information Theory to Security Engineering (2011) Cambridge, U.K. Cambridge Univ. Press https://doi.org/10.1017/CBO9780511977985 [CrossRef] [Google Scholar]
  28. Cover T. M., Thomas J. A., Elements of Information Theory, 2nd (2006) New York Wiley [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.