Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 16, Number 1, 2020
Article Number 10
Number of page(s) 5
DOI https://doi.org/10.1186/s41476-020-00131-w
Published online 06 May 2020
  1. Shao Y, Wang Y, Chi N, 60-GHz RoF system with low PAPR 16QAM-OFDM downlink using PTS segmentation. IEEE Photon. Technol. Lett. (2013) 25, 255–258. [NASA ADS] [Google Scholar]
  2. Chow CW, Yeh CH, Xu L, Tsang H, Rayleigh backscattering mitigation using wavelength splitting for heterogeneous optical wired and wireless access. IEEE Photon. Technol. Lett. (2010) 22, 1294–1295. https://doi.org/10.1109/LPT.2010.2053841 [NASA ADS] [CrossRef] [Google Scholar]
  3. Zhu Y, Wu Y, Xu H, Browning C, et al.Experimental Demonstration of a WDM-RoF Based Mobile Fronthaul with f-OFDM Signals by Using Directly Modulated 3s-DBR Laser. J. Lightwave Technol. (2019) 37, 3875–3881. https://doi.org/10.1109/JLT.2019.2923245 [NASA ADS] [CrossRef] [Google Scholar]
  4. Qian D, Cvijetic N, Hu J, Wang T, 108 Gb/s OFDMA-PON with polarization multiplexing and direct detection. IEEE J. Lightw. Technol. (2010) 28, 484–493. https://doi.org/10.1109/JLT.2009.2029541 [CrossRef] [Google Scholar]
  5. Lin C-T, Shih P-T, Chen J, Xue W, Peng P, Chi S, Optical millimeter-wave signal generation using frequency quadrupling technique and no optical filter. IEEE Photon. Technol. Lett. (2008) 20, 121027–1029. https://doi.org/10.1109/LPT.2008.923739 [CrossRef] [Google Scholar]
  6. Shao Y, Chi N, Fan J, Wang Y, Fang W, Novel centralized-light-source WDM-RoF system with OFDM-CPM downstream and OOK upstream. Optics Comm. (2012) 285, 3437–3440. https://doi.org/10.1016/j.optcom.2012.03.024 [NASA ADS] [CrossRef] [Google Scholar]
  7. Jiang W, Lin C, Shih P, Chen J, Peng P, Chi S, A full duplex radio-over-fiber link with multi-level OFDM signal via a single electrode MZM and wavelength reuse with a RSOA. Opt. Express (2010) 18, 2710–2718. https://doi.org/10.1364/OE.18.002710 [NASA ADS] [CrossRef] [Google Scholar]
  8. Huang, H.T., Lin, C.T., Chiang, S.C., et al.: Volterra nonlinearity compensator for I/Q imbalanced Mm-Wave OFDM RoF systems. In: 2015 International Topical Meeting on Microwave Photonics (MWP). (2015) [Google Scholar]
  9. Ye, J., Yan, L., et al.: Phase-shift assisted OFDM-RoF transmission employing optical heterodyning. In: 2017 International Topical Meeting on Microwave Photonics (MWP). (2017) [Google Scholar]
  10. Shao Y, Chi N, Fan J, Fang W, Generation of 16-QAM-OFDM signals using selected mapping method and its application in optical millimeter-wave access system. IEEE Photon. Technol. Lett. (2012) 24, 1301–1303. https://doi.org/10.1109/LPT.2012.2202387 [NASA ADS] [CrossRef] [Google Scholar]
  11. Shao Y, PAPR reduction and receiver sensitivity improvement in 16QAM-OFDM RoF system using DMT modulation and BTN-PS technique. Optical and laser technology. Opt. Laser Technol. (2016) 77, 59–63. https://doi.org/10.1016/j.optlastec.2015.08.013 [NASA ADS] [CrossRef] [Google Scholar]
  12. Lee SCJ, Breyer F, Randel S, Henrie P, van den Boom A, Koonen AMJ, High-speed transmission over multimode fiber using discrete multitone modulation. J. Opt. Networking. (2008) 7, 183–196. https://doi.org/10.1364/JON.7.000183 [NASA ADS] [CrossRef] [Google Scholar]
  13. Chen X, Li A, Gao G, Shieh W, Experimental demonstration of improved fiber nonlinearity tolerance for unique-word DFT-spread OFDM systems. Opt. Express (2011) 19, 26198–26207. https://doi.org/10.1364/OE.19.026198 [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.