Open Access
J. Eur. Opt. Soc.-Rapid Publ.
Volume 16, Number 1, 2020
Article Number 1
Number of page(s) 12
Published online 31 December 2019
  1. Cao Y, He Z, Yang J, Ye X, Cao Y, A multi-scale non-uniformity correction method based on wavelet decomposition and guided filtering for uncooled long wave infrared camera. Signal processing. Image Commun. (2018) 60, 13–21. [Google Scholar]
  2. Zuo C, Chen Q, Gu G, Sui X, Scene-based nonuniformity correction algorithm based on interframe registration. JOSA A. (2011) 28, 1164–1176. [NASA ADS] [CrossRef] [Google Scholar]
  3. Cao Y, He Z, Yang J, Cao Y, Spatially adaptive column fixed-pattern noise correction in infrared imaging system using 1D horizontal differential statistics. IEEE Photonics J. (2017) 9, 1–13. [CrossRef] [Google Scholar]
  4. Tomasi C, Manduchi R, Bilateral filtering for gray and color images. Proceedings of the 6th International Conference on Computer Vision Freiburg, Germany, 2–6 June (1998) 839–846. [Google Scholar]
  5. He K, Sun J, Tang X, Guided image filtering. Computer Vision–ECCV (2010) Berlin/HeidelbergSpringer1–14. [Google Scholar]
  6. Kou F, Chen W, Wen C, Li Z, Gradient domain guided image filtering. IEEE Trans. Image Process. (2015) 24, 4528–4539. [NASA ADS] [CrossRef] [Google Scholar]
  7. Morris, N., J., W., Avidan, S., et al.: Statistics of infrared images. Computer Vision and Pattern Recognition (CVPR), pp. 1–7. (2007). [Google Scholar]
  8. Sui X, Chen Q, Gu G, Algorithm for eliminating stripe noise in infrared image. J. Infrared Millim. Waves (2012) 31, 106–112. [CrossRef] [Google Scholar]
  9. Qian W, Chen Q, Gu G, Minimum mean square error method for stripe nonuniformity correction. Chin. Opt. Lett. (2011) 9, 34–36. [Google Scholar]
  10. Narayanan B, Hardie RC, Muse RA, Scene-based nonuniformity correction technique that exploits knowledge of the focal-plane array readout architecture. Appl. Optics (2015) 44, 3482–3491. [Google Scholar]
  11. Hogasten N, et al.Systems and Methods for Processing Infrared Images: Jun. 26 , US Patent 8,208,026 (2018) [Google Scholar]
  12. Tendero Y, Landeau S, Gilles J, Non-uniformity correction of infrared images by midway equalization. Image Process. Line. (2012) 2, 134–146. [CrossRef] [Google Scholar]
  13. Tendero Y, Gilles J, ADMIRE: a locally adaptive single-image, non-uniformity correction and denoising algorithm: application to uncooled IR camera. Infrared Technology and Applications XXXVIII (2012) BaltimoreInternational Society for Optics and Photonics83531.–27 April [Google Scholar]
  14. Buades,A.,Bartomeu,C., et al.: A non-local algorithm for image denoising. Computer Vision and Pattern Recognition (CVPR), 2, 60–65 (2005). [Google Scholar]
  15. Dabov K, Foi A, Katkovnik V, et al.Image denoising by sparse 3D transform-domain collaborative filtering. IEEE Trans. Image Process. (2007) 16, 2080–2095. [CrossRef] [Google Scholar]
  16. Qian W, Chen Q, Gu G, Guan Z, Correction method for stripe nonuniformity. Appl. Optics (2010) 49, 1764–1773. [NASA ADS] [CrossRef] [Google Scholar]
  17. Zhao F, Zhou Q, Chen Y, et al.Single image stripe nonuniformity correction with gradient-constrained optimization model for infrared focal plane arrays. Opt. Commun. (2013) 296, 47–52. [NASA ADS] [CrossRef] [Google Scholar]
  18. Wang YM, et al.Study on two-point multi-section IRFPA nonuniformity correction algorithm. J. Infrared Millim. Waves. (2003) 22, 415–418. [Google Scholar]
  19. Friedenberg A, Goldblatt I, Nonuniformity two-point linear correction errors in infrared focal plane arrays. Optim. Eng. (1998) 37, 1251–1253. [NASA ADS] [CrossRef] [Google Scholar]
  20. Perry DL, et al.Linear theory of nonuniformity correction in infrared staring sensors. Optim. Eng. (1993) 32, 1854–1859. [NASA ADS] [CrossRef] [Google Scholar]
  21. Pipa DR, da Silva EAB, Pagliari CL, Diniz PSR, Recursive algorithms for bias and gain nonuniformity correction in infrared videos. IEEE Trans. Image Process. (2012) 21, 4758–4769. [CrossRef] [Google Scholar]
  22. Maggioni M, Sanchez-Monge E, Foi A, Joint removal of random and fixed-pattern noise through spatiotemporal video filtering. IEEE Trans. Image Process. (2014) 23, 4282–4296. [NASA ADS] [CrossRef] [Google Scholar]
  23. Harris JG, Chiang YM, Nonuniformity correction of infrared image sequences using the constant-statistics constraint. IEEE Trans. Image Process. (1999) 8, 1148–1151. [CrossRef] [Google Scholar]
  24. Hardie RC, Hayat MM, Armstrong E, Yasuda B, Scene-based nonuniformity correction with video sequences and registration. Appl. Optics (2000) 39, 1241–1250. [NASA ADS] [CrossRef] [Google Scholar]
  25. Cao Y, Yang MY, Tisse CL, Effective strip noise removal for low-textured infrared images based on 1-D guided filtering. IEEE Trans. Circuits Syst. Video Technol. (2016) 26, 2176–2188. [CrossRef] [Google Scholar]
  26. Liu L, Zhang T, Optics temperature-dependent nonuniformity correction via L0-regularized prior for airborne infrared imaging systems. IEEE Photonics J. (2016) 8, 1–10. [Google Scholar]
  27. Li DH, Li LL, Liu DW, Temperature dependence of the Raman spectra of Bi2Te3 and Bi0.5Sb1.5Te3 thermoelectric films. Phys. Status Solidi (RRL) - Rapid Res. Lett. (2012) 6, 6268–270. [NASA ADS] [CrossRef] [Google Scholar]
  28. Sui X, Chen Q, Gu G, Adaptive grayscale adjustment-based stripe noise removal method of single image. Infrared Phys. Technol. (2013) 60, 121–128. [NASA ADS] [CrossRef] [Google Scholar]
  29. Boutemedjet A, Deng C, Zhao B, Edge-aware unidirectional total variation model for stripe non-uniformity correction. Sensors (2018) 18, 1164. [NASA ADS] [CrossRef] [Google Scholar]
  30. Xu KK, Silicon MOS optoelectronic micro-Nano structure based on reverse-biased PN junction. Phys. Status Solidi A (2019) 216, 71–9. [Google Scholar]
  31. Huang Y, He C, Fang H, Wang X, Iteratively reweighted unidirectional variational model for stripe non-uniformity correction. Infrared Phys. Technol. (2016) 75, 107–116. [NASA ADS] [CrossRef] [Google Scholar]
  32. Chang Y, Yan L, Wu T, Zhong S, Remote sensing image stripe noise removal: from image decomposition perspective. IEEE Trans. Geosci. Remote Sens. (2016) 54, 7018–7703. [NASA ADS] [CrossRef] [Google Scholar]
  33. Kuang X, Sui X, Chen Q, Gu G, Single infrared image stripe noise removal using deep convolutional networks. IEEE Photonics J. (2017) 9, 1–13. [CrossRef] [Google Scholar]
  34. Pande-Chhetri R, Abd-Elrahman A, De-striping hyperspectral imagery using wavelet transform and adaptive frequency domain filtering. ISPRS J. Photogramm. Remote Sens. (2011) 66, 620–636. [NASA ADS] [CrossRef] [Google Scholar]
  35. Gonzalez,R.C., et al.: Digital Image Processing. 3rd Edition, Prentice Hall, India. pp. 461–524 (2008). [Google Scholar]
  36. Wang E, Jiang P, Hou X, et al.Infrared stripe correction algorithm based on wavelet analysis and gradient equalization. Appl. Sci. (2019) 9, 101993–2011. [CrossRef] [Google Scholar]
  37. Lu XL, Liu R, Liu J, et al.Removal of noise by wavelet method to generate high quality temporal data of terrestrial MODIS products. Photogramm. Eng. Remote Sens. (2007) 73, 1129–1139. [Google Scholar]
  38. Cao YP, Li Y, Strip non-uniformity correction in uncooled long-wave infrared focal plane array based on noise source characterization. Opt. Commun. (2015) 339, 236–242. [CrossRef] [Google Scholar]
  39. He K, Sun J, Tang X, Guided image filtering. IEEE Trans. Pattern Anal. (2013) 35, 1397–1409. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.