Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 14, Number 1, 2018
Article Number 26
Number of page(s) 13
DOI https://doi.org/10.1186/s41476-018-0094-8
Published online 21 November 2018
  1. Angelo JP, van de Giessen M, Gioux S, Real-time endoscopic optical properties imaging. Biomed. Opt. Express (2017) 8, 115113–5126. https://doi.org/10.1364/BOE.8.005113 [CrossRef] [Google Scholar]
  2. Reich C, Ritter R, Thesing J, 3-D shape measurement of complex objects by combining photogrammetry and fringe projection. Opt. Eng. (2000) 39, 1224–232. https://doi.org/10.1117/1.602356 [NASA ADS] [CrossRef] [Google Scholar]
  3. Günther P, Kuschmierz R, Pfister T, Czarske J, Distance measurement technique using tilted interference fringe systems and receiving optic matching. Opt. Lett. (2012) 37, 224702–4704. https://doi.org/10.1364/OL.37.004702 [CrossRef] [Google Scholar]
  4. Feng S, Zhang Y, Chen Q, Zuo C, Li R, Shen G, General solution for high dynamic range three-dimensional shape measurement using the fringe projection technique. Opt. Lasers Eng. (2014) 59, 56–71. https://doi.org/10.1016/j.optlaseng.2014.03.003 [NASA ADS] [CrossRef] [Google Scholar]
  5. Osten W, Application of optical shape measurement for the nondestructive evaluation of complex objects. Opt. Eng. (2000) 39, 1232–244. https://doi.org/10.1117/1.602357 [NASA ADS] [CrossRef] [Google Scholar]
  6. Feng S, Chen Q, Zuo C, Li R, Shen G, Feng F, Automatic identification and removal of outliers for high-speed fringe projection profilometry. Opt. Eng. (2013) 52, 013605. https://doi.org/10.1117/1.OE.52.1.013605 [NASA ADS] [CrossRef] [Google Scholar]
  7. Zheng D, Da F, Absolute phase retrieval for defocused fringe projection three-dimensional measurement. Opt. Commun. (2014) 312, 4302–311. https://doi.org/10.1016/j.optcom.2013.09.056 [NASA ADS] [CrossRef] [Google Scholar]
  8. Zuo C, Chen Q, Gu G, Feng S, Feng F, High-speed three-dimensional profilometry for multiple objects with complex shapes. Opt. Express (2012) 20, 19493–19510. https://doi.org/10.1364/OE.20.019493 [CrossRef] [Google Scholar]
  9. Heist S, Kühmstedt P, Tünnermann A, Notni G, Theoretical considerations on aperiodic sinusoidal fringes in comparison to phase-shifted sinusoidal fringes for high-speed three-dimensional shape measurement. Appl. Opt. (2015) 54, 3510541–10551. https://doi.org/10.1364/AO.54.010541 [CrossRef] [Google Scholar]
  10. Zhang S, Van Der Weide D, Oliver J, Superfast phase-shifting method for 3-D shape measurement. Opt. Express (2010) 18, 99684–9689. https://doi.org/10.1364/OE.18.009684 [NASA ADS] [CrossRef] [Google Scholar]
  11. Dreier F, Günther P, Pfister T, Czarske JW, Fischer A, Interferometric sensor system for blade vibration measurements in turbomachine applications. IEEE Trans. Instrum. Meas. (2013) 62, 82297–2302. https://doi.org/10.1109/TIM.2013.2255993 [NASA ADS] [CrossRef] [Google Scholar]
  12. Heist S, Lutzke P, Schmidt I, Dietrich P, Kühmstedt P, High-speed three-dimensional shape measurement using GOBO projection. Opt. Lasers Eng. (2016) 87, 90–96. https://doi.org/10.1016/j.optlaseng.2016.02.017 [NASA ADS] [CrossRef] [Google Scholar]
  13. Xu Y, Ekstrand L, Dai J, Zhang S, Phase error compensation for three-dimensional shape measurement with projector defocusing. Appl. Opt. (2011) 50, 172572–81.6. https://doi.org/10.1364/AO.50.002572 [NASA ADS] [CrossRef] [Google Scholar]
  14. Takeda M, Gu Q, Kinoshita M, Takai H, Takahashi Y, Frequency-multiplex Fourier-transform profilometry: a single-shot three-dimensional shape measurement of objects with large height discontinuities and/or surface isolations. Appl. Opt. (1997) 36, 5347–5354. https://doi.org/10.1364/AO.36.005347 [NASA ADS] [CrossRef] [Google Scholar]
  15. Wagner C, Osten W, Seebacher S, Direct shape measurement by digital wavefront reconstruction and multi-wavelength contouring. Opt. Eng. (2000) 39, 179–86. https://doi.org/10.1117/1.602338 [NASA ADS] [CrossRef] [Google Scholar]
  16. Ayubi GA, Ayubi JA, Di Martino JM, Ferrari JA, Di Martino JM, Ferrari JA, Pulse-width modulation in defocused three-dimensional fringe projection. Opt. Lett. (2010) 35, 213682–3684. https://doi.org/10.1364/OL.35.003682 [NASA ADS] [CrossRef] [Google Scholar]
  17. Wang Y, Zhang S, Optimal pulse width modulation for sinusoidal fringe generation with projector defocusing. Opt. Lett. (2010) 35, 244121–4123. https://doi.org/10.1364/OL.35.004121 [NASA ADS] [CrossRef] [Google Scholar]
  18. Garnica G, Padilla M, Servin M, Dual-sensitivity profilometry with defocused projection of binary fringes. Appl. Opt. (2017) 56, 287985–7989. https://doi.org/10.1364/AO.56.007985 [NASA ADS] [CrossRef] [Google Scholar]
  19. Zi-Xin XU, Chan YH, Removing harmonic distortion of measurements of a defocusing three-step phase-shifting digital fringe projection system. Opt. Lasers Eng. (2017) 90, 139–145. https://doi.org/10.1016/j.optlaseng.2016.10.002 [CrossRef] [Google Scholar]
  20. Kite TD, Evans BL, Bovik AC, Modeling and quality assessment of Halftoning by error diffusion. IEEE Int. Conf. Image Process. (2000) 9, 5909–922. https://doi.org/10.1109/83.841536 [NASA ADS] [CrossRef] [Google Scholar]
  21. Kuschmierz R, et al.Optical, in situ, three-dimensional, absolute shape measurements in CNC metal working lathes. Int. J. Adv. Manuf. Technol. (2016) 84, 9-122739–2749. https://doi.org/10.1007/s00170-015-8234-4 [CrossRef] [Google Scholar]
  22. Dai, J., Li, B., Zhang, S.: Improve dithering technique for 3D shape measurement: phase vs intensity optimization[C]//Dimensional Optical Metrology and Inspection for Practical Applications II. Int. Soc. Opt. Photon. 8839, 883904 (2013) [Google Scholar]
  23. Ettl S, Kaminski J, Knauer MC, Häusler G, Shape reconstruction from gradient data. Appl. Opt. (2008) 47, 2091–2097. https://doi.org/10.1364/AO.47.002091 [CrossRef] [Google Scholar]
  24. Wang Y, Laughner JI, Efimov IR, Zhang S, 3D absolute shape measurement of live rabbit hearts with a superfast two-frequency phase-shifting technique. Opt. Express (2013) 21, 55822–5832. https://doi.org/10.1364/OE.21.005822 [NASA ADS] [CrossRef] [Google Scholar]
  25. Dai J, Li B, Zhang S, Intensity-optimized dithering technique for three-dimensional shape measurement with projector defocusing. Opt. Lasers Eng. (2014) 53, 79–85. https://doi.org/10.1016/j.optlaseng.2013.08.015 [NASA ADS] [CrossRef] [Google Scholar]
  26. Li X-X, Zhang Z, Yang C, High-quality fringe pattern generation using binary pattern optimization based on a novel objective function. Opt. J. Light Electron Opt. (2016) 127, 135322–5327. https://doi.org/10.1016/j.ijleo.2016.03.005 [CrossRef] [Google Scholar]
  27. Li J, Hassebrook LG, Guan C, Optimized two-frequency phase-measuring-profilometry light-sensor temporal-noise sensitivity. JOSA A (2003) 20, 1106–115. https://doi.org/10.1364/JOSAA.20.000106 [NASA ADS] [CrossRef] [Google Scholar]
  28. Dai J, Zhang S, Phase-optimized dithering technique for high-quality 3D shape measurement. Opt. Lasers Eng. (2013) 51, 6790–795. https://doi.org/10.1016/j.optlaseng.2013.02.003 [NASA ADS] [CrossRef] [Google Scholar]
  29. Li B, Wang Y, Dai J, et al.Some recent advances on superfast 3D shape measurement with digital binary defocusing techniques. Opt. Lasers Eng. (2014) 54, 236–246. https://doi.org/10.1016/j.optlaseng.2013.07.010 [NASA ADS] [CrossRef] [Google Scholar]
  30. Sun JS, Zuo C, Feng SJ, Yu SL, Zhang YZ, Chen Q, Improved intensity optimized dithering technique for 3D shape measurement. Opt. Lasers Eng. (2015) 66, 158–164. https://doi.org/10.1016/j.optlaseng.2014.09.008 [NASA ADS] [CrossRef] [Google Scholar]
  31. Wang Y, Zhang S, Three-dimensional shape measurement with binary dithered patterns. Appl. Opt. (2012) 51, 276631–6636. https://doi.org/10.1364/AO.51.006631 [NASA ADS] [CrossRef] [Google Scholar]
  32. Dai J, Li B, Zhang S, High-quality fringe pattern generation using binary pattern optimization through symmetry and periodicity. Opt. Lasers Eng. (2014) 52, 1195–200. https://doi.org/10.1016/j.optlaseng.2013.06.010 [NASA ADS] [CrossRef] [Google Scholar]
  33. Zuo C, Chen Q, Gu G, Ren J, Sui X, Zhang Y, Optimized three-step phase-shifting profilometry using the third harmonic injection. Opt. Appl. (2013) 51, 393–408. [NASA ADS] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.