Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 14, Number 1, 2018
Article Number 21
Number of page(s) 8
DOI https://doi.org/10.1186/s41476-018-0089-5
Published online 03 October 2018
  1. Booth MJ, Adaptive optics in microscopy. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. (2007) 365, 2829. https://doi.org/10.1098/rsta.2007.0013 [NASA ADS] [CrossRef] [Google Scholar]
  2. Ji N, Adaptive optical fluorescence microscopy. Nat Meth (2017) 14, 374–380. https://doi.org/10.1038/nmeth.4218 [CrossRef] [Google Scholar]
  3. Kubby, JA (ed.): Adaptive optics for biological imaging. CRC Press (2013) [Google Scholar]
  4. Rahman SA, Booth MJ, Direct wavefront sensing in adaptive optical microscopy using backscattered light. Appl. Opt. (2013) 52, 5523–5532. https://doi.org/10.1364/AO.52.005523 [NASA ADS] [CrossRef] [Google Scholar]
  5. Rueckel M, Mack-Bucher JA, Denk W, Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing. Proc. Natl. Acad. Sci. (2006) 103, 17137–17142. https://doi.org/10.1073/pnas.0604791103 [Google Scholar]
  6. Tao X, Fernandez B, Azucena O, Fu M, Garcia D, Zuo Y, Chen DC, Kubby J, Adaptive optics confocal microscopy using direct wavefront sensing. Opt. Lett. (2011) 36, 1062–1064. https://doi.org/10.1364/OL.36.001062 [CrossRef] [Google Scholar]
  7. Wilding D, Pozzi P, Soloviev O, Vdovin G, Verhaegen M, Adaptive illumination based on direct wavefront sensing in a light-sheet fluorescence microscope. Opt. Express (2016) 24, 24896–24906. https://doi.org/10.1364/OE.24.024896 [NASA ADS] [CrossRef] [Google Scholar]
  8. Wang, K., Sun, W., Richie, C.T., Harvey, B.K., Betzig, E., Ji, N.: Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue. Nat. Commun. 6(7276), (2015) [Google Scholar]
  9. Albert O, Sherman L, Mourou G, Norris TB, Vdovin G, Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy. Opt. Lett. (2000) 25, 52–54. https://doi.org/10.1364/OL.25.000052 [NASA ADS] [CrossRef] [Google Scholar]
  10. Galwaduge PT, Kim SH, Grosberg LE, Hillman EMC, Simple wavefront correction framework for two-photon microscopy of in-vivo brain. Biomedical Optics Express (2015) 6, 2997–3013. https://doi.org/10.1364/BOE.6.002997 [CrossRef] [Google Scholar]
  11. Wright AJ, Burns D, Patterson BA, Poland SP, Valentine GJ, Girkin JM, Exploration of the optimisation algorithms used in the implementation of adaptive optics in confocal and multiphoton microscopy. Microsc. Res. Tech. (2005) 67, 36–44. https://doi.org/10.1002/jemt.20178 [Google Scholar]
  12. Booth MJ, Wave front sensor-less adaptive optics: a model-based approach using sphere packings. Opt. Express (2006) 14, 1339–1352. https://doi.org/10.1364/OE.14.001339 [CrossRef] [Google Scholar]
  13. Booth MJ, Wavefront sensorless adaptive optics for large aberrations. Opt. Lett. (2007) 32, 5–7. https://doi.org/10.1364/OL.32.000005 [NASA ADS] [CrossRef] [Google Scholar]
  14. Débarre D, Botcherby EJ, Watanabe T, Srinivas S, Booth MJ, Wilson T, Image-based adaptive optics for two-photon microscopy. Opt. Lett. (2009) 34, 2495–2497. https://doi.org/10.1364/OL.34.002495 [CrossRef] [Google Scholar]
  15. Koukourakis N, Fregin B, König J, Büttner L, Czarske JW, Wavefront shaping for imaging-based flow velocity measurements through distortions using a Fresnel guide star. Opt. Express (2016) 24, 22074–22087. https://doi.org/10.1364/OE.24.022074 [Google Scholar]
  16. Radner H, Büttner L, Czarske J, Interferometric velocity measurements through a fluctuating phase boundary using two Fresnel guide stars. Opt. Lett. (2015) 40, 3766–3769. https://doi.org/10.1364/OL.40.003766 [NASA ADS] [CrossRef] [Google Scholar]
  17. Edrei, E., Scarcelli, G.: Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media. Sci. Rep. 6(33558), (2016) [Google Scholar]
  18. Bertolotti J, Multiple scattering: Unravelling the tangle. Nat. Phys. (2015) 11, 622–623. https://doi.org/10.1038/nphys3389 [CrossRef] [Google Scholar]
  19. Jansson, PA (ed.): Deconvolution of images and spectra (2nd ed.). Academic Press, Inc. (1996) [Google Scholar]
  20. Biggs, DSC: 3D Deconvolution microscopy. In: Current Protocols in Cytometry, 52. John Wiley & Sons, Inc. (2001) [Google Scholar]
  21. Starck JL, Pantin E, Murtagh F, Deconvolution in astronomy: a review. Publ. Astron. Soc. Pac. (2002) 114, 1051–1069. https://doi.org/10.1086/342606 [NASA ADS] [CrossRef] [Google Scholar]
  22. Sibarita JB, Deconvolution Microscopy. Adv. Biochem. Eng. Biotechnol. (2005) 95, 201–243. [Google Scholar]
  23. McNally JG, Karpova T, Cooper J, Conchello JA, Three-dimensional imaging by Deconvolution microscopy. Methods (1999) 19, 373–385. https://doi.org/10.1006/meth.1999.0873 [CrossRef] [Google Scholar]
  24. Sarder P, Nehorai A, Deconvolution methods for 3-D fluorescence microscopy images. IEEE Signal Process. Mag. (2006) 23, 32–45. https://doi.org/10.1109/MSP.2006.1628876 [CrossRef] [Google Scholar]
  25. Biggs DSC, Andrews M, Acceleration of iterative image restoration algorithms. Appl. Opt. (1997) 36, 1766–1775. https://doi.org/10.1364/AO.36.001766 [NASA ADS] [CrossRef] [Google Scholar]
  26. Richardson WH, Bayesian-based iterative method of image restoration. J. Opt. Soc. Am. (1972) 62, 55–59. https://doi.org/10.1364/JOSA.62.000055 [NASA ADS] [CrossRef] [Google Scholar]
  27. Lucy LB, An iterative technique for the rectification of observed distributions. Astron. J. (1974) 79, 745. https://doi.org/10.1086/111605 [NASA ADS] [CrossRef] [Google Scholar]
  28. Sage D, Donati L, Soulez F, Fortun D, Schmit G, Seitz A, Guiet R, Vonesch C, Unser M, DeconvolutionLab2: an open-source software for deconvolution microscopy. Methods (2017) 115, 28–41. https://doi.org/10.1016/j.ymeth.2016.12.015 [Google Scholar]
  29. Prahl, SA: Everything I think you should know about Inverse Adding-Doubling. Oregon Medical Laser Center. https://omlc.org/software/iad/manual.pdf (2011). Accessed 01 March 2018 [Google Scholar]
  30. Prahl SA, van Gemert MJC, Welch AJ, Determining the optical properties of turbid media by using the adding–doubling method. Appl. Opt. (1993) 32, 559–568. https://doi.org/10.1364/AO.32.000559 [NASA ADS] [CrossRef] [Google Scholar]
  31. Prahl, SA: Inverse Adding-Doubling. Oregon Medical Laser Center. https://omlc.org/software/iad/index.html (2017). Accessed 01 March 2018 [Google Scholar]
  32. Cheong WF, Prahl SA, Welch AJ, A review of the optical properties of biological tissues. IEEE J. Quantum Electron. (1990) 26, 2166–2185. https://doi.org/10.1109/3.64354 [NASA ADS] [CrossRef] [Google Scholar]
  33. Schott S, Bertolotti J, Léger J-F, Bourdieu L, Gigan S, Characterization of the angular memory effect of scattered light in biological tissues. Opt. Express (2015) 23, 13505–13516. https://doi.org/10.1364/OE.23.013505 [CrossRef] [Google Scholar]
  34. Vellekoop IM, Feedback-based wavefront shaping. Opt. Express (2015) 23, 12189–12206. https://doi.org/10.1364/OE.23.012189 [NASA ADS] [CrossRef] [Google Scholar]
  35. Mosk AP, Lagendijk A, Lerosey G, Fink M, Controlling waves in space and time for imaging and focusing in complex media. Nat Photon (2012) 6, 283–292. https://doi.org/10.1038/nphoton.2012.88 [NASA ADS] [CrossRef] [Google Scholar]
  36. Vellekoop IM, Mosk AP, Focusing coherent light through opaque strongly scattering media. Opt. Lett. (2007) 32, 2309–2311. https://doi.org/10.1364/OL.32.002309 [NASA ADS] [CrossRef] [Google Scholar]
  37. Vellekoop IM, Aegerter CM, Scattered light fluorescence microscopy: imaging through turbid layers. Opt. Lett. (2010) 35, 1245–1247. https://doi.org/10.1364/OL.35.001245 [CrossRef] [Google Scholar]
  38. Vellekoop IM, Aegerter CM, Focusing light through living tissue. Proc. SPIE (2010) 7554, 755430. https://doi.org/10.1117/12.841159 [Google Scholar]
  39. Ghielmetti G, Aegerter CM, Direct imaging of fluorescent structures behind turbid layers. Opt. Express (2014) 22, 1981–1989. https://doi.org/10.1364/OE.22.001981 [CrossRef] [Google Scholar]
  40. Ghielmetti G, Aegerter CM, Scattered light fluorescence microscopy in three dimensions. Opt. Express (2012) 20, 3744–3752. https://doi.org/10.1364/OE.20.003744 [CrossRef] [Google Scholar]
  41. Schneider, J., Aegerter, C.M.: Dynamic light sheet generation and fluorescence imaging behind turbid media. Journal of the European Optical Society-Rapid Publications. 14(7), (2018) [Google Scholar]
  42. Horstmeyer R, Ruan H, Yang C, Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue. Nat Photon (2015) 9, 563–571. https://doi.org/10.1038/nphoton.2015.140 [NASA ADS] [CrossRef] [Google Scholar]
  43. Bourgenot C, Saunter CD, Taylor JM, Girkin JM, Love GD, 3D adaptive optics in a light sheet microscope. Opt. Express (2012) 20, 13252–13261. https://doi.org/10.1364/OE.20.013252 [NASA ADS] [CrossRef] [Google Scholar]
  44. Cui M, McDowell EJ, Yang C, An in vivo study of turbidity suppression by optical phase conjugation (TSOPC) on rabbit ear. Opt. Express (2010) 18, 25–30. https://doi.org/10.1364/OE.18.000025 [CrossRef] [Google Scholar]
  45. Yaqoob Z, Psaltis D, Feld MS, Yang C, Optical phase conjugation for turbidity suppression in biological samples. Nat Photon (2008) 2, 110–115. https://doi.org/10.1038/nphoton.2007.297 [CrossRef] [Google Scholar]
  46. Shen Y, Liu Y, Ma C, Wang LV, Focusing light through biological tissue and tissue-mimicking phantoms up to 9.6 cm in thickness with digital optical phase conjugation. J. Biomed. Opt. (2016) 21, https://doi.org/10.1117/1.JBO.21.8.085001 [NASA ADS] [CrossRef] [Google Scholar]
  47. Wang D, Zhou EH, Brake J, Ruan H, Jang M, Yang C, Focusing through dynamic tissue with millisecond digital optical phase conjugation. Optica (2015) 2, 728–735. https://doi.org/10.1364/OPTICA.2.000728 [NASA ADS] [CrossRef] [Google Scholar]
  48. Vellekoop IM, Cui M, Yang C, Digital optical phase conjugation of fluorescence in turbid tissue. Appl. Phys. Lett. (2012) 101, https://doi.org/10.1063/1.4745775 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.