Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 14, Number 1, 2018
|
|
---|---|---|
Article Number | 11 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.1186/s41476-018-0079-7 | |
Published online | 10 April 2018 |
- Siegel, R., Howell, J.R.: Thermal Radiation Heat Transfer, vol. 1, 4th edn, p. 7. Taylor & Francis (2002) ISBN 1-56032-839-8. [Google Scholar]
- Nam, Y., Xiang Yeng, Y., Lenert, A., Bermel, P., Celanovic, I., Soljačić, M., Wang, E.N.: Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters. Sol. Energy Mater. Sol. Cells. 122, 287–296 (2014) [Google Scholar]
- Mizuno K, et al.A black body absorber from vertically aligned single-walled carbon nanotubes. Proc Natl Acad Sci (2009) 106, 6044–6077. https://doi.org/10.1073/pnas.0900155106https://doi.org/10.1073/pnas.0900155106 [Google Scholar]
- Tune DD, Flavel BS, Krupke R, Shapter JG, Solar Cells: Carbon Nanotube-Silicon Solar Cells. Advanced Energy Materials (2012) 2, 1043–1055. https://doi.org/10.1002/aenm.201200249https://doi.org/10.1002/aenm.201290045 [CrossRef] [Google Scholar]
- Leahu G, Li Voti R, Larciprete MC, Sibilia C, Bertolotti M, Nefedov I, Anoshkin IV, Thermal Characterization of Carbon Nanotubes by Photothermal Techniques. Int. J. Thermophys (2015) 36, 1349–1357. https://doi.org/10.1007/s10765-014-1804-0 [NASA ADS] [CrossRef] [Google Scholar]
- Cao T, Wei CW, Simpson RE, Zhang L, Cryan MJ, Broadband Polarization-Independent Perfect Absorber Using a Phase-Change Metamaterial at Visible Frequencies. Sci. Rep (2014) 4, 3955. https://doi.org/10.1038/srep03955 [NASA ADS] [CrossRef] [Google Scholar]
- Wang W, Wu S, Reinhardt K, Lu Y, Chen S, Broadband Light Absorption Enhancement in Thin-Film Silicon Solar Cells. Nano Lett (2010) 10, 2012. https://doi.org/10.1021/nl904057p [CrossRef] [Google Scholar]
- Aydin K, Ferry VE, Briggs RM, Atwater HA, Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat. Commun (2011) 2, 517. https://doi.org/10.1038/ncomms1528 [NASA ADS] [CrossRef] [Google Scholar]
- Teperik TV, De Abajo FG, Borisov A, Abdelsalam M, Bartlett P, Sugawara Y, Baumberg J, Omnidirectional absorption in nanostructured metal surfaces. Nat. Photonics (2008) 2, 299. https://doi.org/10.1038/nphoton.2008.76 [CrossRef] [Google Scholar]
- Cheng CW, Abbas MN, Chiu CW, Lai KT, Shih MH, Chang YC, Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays. Opt. Express (2012) 20, 10376. https://doi.org/10.1364/OE.20.010376 [NASA ADS] [CrossRef] [Google Scholar]
- Centini M, Benedetti A, Larciprete MC, Belardini A, Li Voti R, Bertolotti M, Sibilia C, Midinfrared thermal emission properties of finite arrays of gold dipole nanoantennas. Phys. Rev. B (2015) 92, 205411. https://doi.org/10.1103/PhysRevB.92.205411 [CrossRef] [Google Scholar]
- Li Voti R, Leahu G, Larciprete MC, Sibilia C, Bertolotti M, Nefedov I, Anoshkin IV, Photoacoustic Characterization of Randomly Oriented Silver Nanowire Films. Int. J. Thermophys (2015) 36, 1342–1348. https://doi.org/10.1007/s10765-014-1774-2 [NASA ADS] [CrossRef] [Google Scholar]
- Belardini A, Pannone F, Leahu G, Larciprete MC, Centini M, Sibilia C, Martella C, Giordano M, Chiappe D, Buatier de Mongeot F, Evidence of anomalous refraction of self-assembled curved gold nanowires. Appl. Phys. Lett (2012) 100, 25251109. https://doi.org/10.1063/1.4729829 [NASA ADS] [CrossRef] [Google Scholar]
- Laroche M, Carminati R, Greffet JJ, Coherent Thermal Antenna Using a Photonic Crystal Slab. Phys. Rev. Lett (2006) 96, 123903. https://doi.org/10.1103/PhysRevLett.96.123903 [NASA ADS] [CrossRef] [Google Scholar]
- Celanovic I, Perreault D, Kassakian, Resonant-cavity enhanced thermal emission. J. Phys. Rev. B (2005) 72, 075127. https://doi.org/10.1103/PhysRevB.72.075127 [NASA ADS] [CrossRef] [Google Scholar]
- Hu CG, Liu LY, Chen XN, Luo XG, Mixed plasmons coupling for expanding the bandwidth of near-perfect absorption at visible frequencies. Opt. Express (2009) 17, 16745. https://doi.org/10.1364/OE.17.016745 [NASA ADS] [CrossRef] [Google Scholar]
- Leahu G, Voti RL, Sibilia C, Bertolotti M, Golubev V, Kurdyukov DA, Study of thermal and optical properties of SiO2/GaN opals by photothermal deflection technique. Opt. Quant. Electron (2007) 39, 305–310. https://doi.org/10.1007/s11082-007-9099-z [CrossRef] [Google Scholar]
- Kats MA, Blanchard R, Zhang S, Genevet P, Ko C, Ramanathan S, Capasso F, Vanadium Dioxide as a Natural Disordered Metamaterial: Perfect Thermal Emission and Large Broadband Negative Differential Thermal Emittance. Physical Review X (2013) 3, 041004. https://doi.org/10.1103/PhysRevX.3.041004 [NASA ADS] [CrossRef] [Google Scholar]
- Paonea M, Geiger R, Sanjines A, Schüler, Thermal solar collector with VO2 absorber coating and thermochromic glazing – Temperature matching and triggering. Sol. Energy (2014) 110, 151–159. https://doi.org/10.1016/j.solener.2014.08.033 [NASA ADS] [CrossRef] [Google Scholar]
- Leahu G, Li Voti R, Sibilia C, Bertolotti M, Anomalous optical switching and thermal hysteresis during semiconductor-metal phase transition of VO2 films on Si substrate. Appl. Phys. Lett (2013) 103, 231114. https://doi.org/10.1063/1.4838395 [NASA ADS] [CrossRef] [Google Scholar]
- Voti RL, Larciprete MC, Leahu G, Sibilia C, Bertolotti M, Optimization of thermochromic VO 2 based structures with tunable thermal emissivity. J. Appl. Phys (2012) 112, 034305. https://doi.org/10.1063/1.4739489 [NASA ADS] [CrossRef] [Google Scholar]
- Mercuri F, Zammit U, Scudieri F, Marinelli M, Thermal and optical study of the kinetics of the nematic-isotropic transition in octylcyanobiphenyl. Phys. Rev. E (2003) 68, 041708. https://doi.org/10.1103/PhysRevE.68.041708 [NASA ADS] [CrossRef] [Google Scholar]
- Zammit U, Marinelli M, Mercuri F, Paoloni S, Effect of Confinement and Strain on the Specific Heat and Latent Heat over the Nematic−Isotropic Phase Transition of 8CB Liquid Crystal. J. Phys. Chem. B (2009) 113, 14315–14322. https://doi.org/10.1021/jp9074702 [CrossRef] [Google Scholar]
- Wang, B., Koschny, T., Soukoulis, C.M.: Wide-angle and polarization-independent chiral metamaterial absorber. Phys. Rev. B. 80(033108), (2009) [Google Scholar]
- Plum, E., Zheludev, N.I.: Chiral mirrors. Appl. Phys. Lett. 106(221901), (2015) [Google Scholar]
- Belardini A, Centini M, Leahu G, Hooper DC, Li Voti R, Fazio E, Haus JW, Sibilia C, Chiral light intrinsically couples to extrinsic/pseudo-chiral metasurfaces made of tilted gold nanowires. Sci. Rep (2016) 6, 31796. https://doi.org/10.1038/srep31796 [NASA ADS] [CrossRef] [Google Scholar]
- Benedetti A, Alam B, Esposito M, Tasco V, Leahu G, Belardini A, Li Voti R, Passaseo A, Sibilia C, Precise detection of circular dichroism in a cluster of nano-helices by photoacoustic measurements. Sci. Rep (2017) 7, 5257. https://doi.org/10.1038/s41598-017-05193-4 [NASA ADS] [CrossRef] [Google Scholar]
- Wu J, Zhou CZ, Cao HC, Hu AD, Polarization-dependent and -independent spectrum selective absorption based on a metallic grating structure. Opt. Comm. (2013) 309, 57. https://doi.org/10.1016/j.optcom.2013.07.012 [NASA ADS] [CrossRef] [Google Scholar]
- Chen, H.-T., Zhou, J., O’Hara, J.F., Chen, F., Azad, A.K., Taylor, A.J.: Antireflection Coating Using Metamaterials and Identification of Its Mechanism. Phys. Rev. Lett. 105(073901), (2010) [Google Scholar]
- Li Voti R, Optimization of transparent metal structures by genetic algorithms. Romanian Reports in Physics (2012) 64, 446–466. [Google Scholar]
- Glorieux C, Thoen J, Thermal depth profile reconstruction by neural network recognition of the photothermal frequency spectrum. J. Appl. Phys (1996) 80, 6510. https://doi.org/10.1063/1.363670 [NASA ADS] [CrossRef] [Google Scholar]
- Glorieux R, Thoen LVJ, Bertolotti M, Sibilia C, Depth profiling of thermally inhomogeneous materials by neural network recognition of photothermal time domain data. J. Appl. Phys. (1999) 85, 7059–7063. https://doi.org/10.1063/1.370512 [CrossRef] [Google Scholar]
- Glorieux C, Li Voti R, Thoen J, Bertolotti M, Sibilia C, Photothermal depth profiling: Analysis of reconstruction errors. Inverse Problems (1999) 15, 1149–1163. https://doi.org/10.1088/0266-5611/15/5/303 [NASA ADS] [CrossRef] [Google Scholar]
- Tomoda M, Li Voti R, Matsuda O, Wright OB, Tomographic reconstruction of picosecond acoustic strain propagation. Appl. Phys. Lett. (2007) 90, 041114. https://doi.org/10.1063/1.2432238 [NASA ADS] [CrossRef] [Google Scholar]
- Krapez JC, Li Voti R, Effusivity Depth Profiling from Pulsed Radiometry Data: Comparison of Different Reconstruction Algorithms. Anal. Sci (2001) 17, s417–s418. https://doi.org/10.2116/analsci.17.417https://doi.org/10.14891/analscisp.17icpp.0.s417.0 [CrossRef] [Google Scholar]
- Li Voti R, Leahu GL, Gaetani S, Sibilia C, Violante V, Castagna E, Bertolotti M, Light scattering from a rough metal surface: Theory and experiment. J. Opt. Soc. Am. B (2009) 26, 1585–1593. https://doi.org/10.1364/JOSAB.26.001585 [NASA ADS] [CrossRef] [Google Scholar]
- Larciprete MC, Belardini A, Voti RL, Sibilia C, Pre-fractal multilayer structure for polarizationinsensitive temporally and spatially coherent thermal emitter. Opt. Express (2013) 21, A576–A584. https://doi.org/10.1364/OE.21.00A576 [NASA ADS] [CrossRef] [Google Scholar]
- Larciprete MC, Centini M, Voti RL, Bertolotti M, Sibilia C, Polarization insensitive infrared absorbing behaviour of one-dimensional multilayer stack: A fractal approach. Opt. Express (2014) 22, A1547–A1552. https://doi.org/10.1364/OE.22.0A1547 [NASA ADS] [CrossRef] [Google Scholar]
- Melnikov A, Mandelis A, Tolev J, Chen P, Huq S, Infrared lock-in carrierography (photocarrier radiometric imaging) of Si solar cells. J. Appl. Phys. (2010) 107, 114513. https://doi.org/10.1063/1.3407521 [NASA ADS] [CrossRef] [Google Scholar]
- Sun QM, Melnikov A, Mandelis A, Quantitative Carrier Density Wave Imaging in Silicon Solar Cells Using Photocarrier Radiometry and Lock-in Carrierography. Int. J. Thermophys. (2016) 37, 45. https://doi.org/10.1007/s10765-016-2054-0 [NASA ADS] [CrossRef] [Google Scholar]
- Matsuda O, Larciprete MC, Li Voti R, Wright OB, Fundamentals of picosecond laser ultrasonics. Ultrasonics (2015) 56, 3–20. https://doi.org/10.1016/j.ultras.2014.06.005 [CrossRef] [Google Scholar]
- Dehoux T, Wright OB, Voti RL, Picosecond time scale imaging of mechanical contacts. Ultrasonics (2010) 50, 197–201. https://doi.org/10.1016/j.ultras.2009.08.008 [CrossRef] [Google Scholar]
- Tomoda M, Wright OB, Li Voti R, Nanoscale thermoelastic probing of megahertz thermal diffusion. Appl. Phys. Lett (2007) 91, 071911. https://doi.org/10.1063/1.2770769 [NASA ADS] [CrossRef] [Google Scholar]
- Zammit, U., Mercuri, F., Paoloni, S., Marinelli, M., Pizzoferrato, R.: Simultaneous absolute measurements of the thermal diffusivity and the thermal effusivity in solids and liquids using photopyroelectric calorimetry. J. Appl. Phys. 117, 105104 (2015) [Google Scholar]
- Zammit U, Paoloni S, Mercuri F, Marinelli M, Scudieri F, Self consistently calibrated photopyroelectric calorimeter for the high resolution simultaneous absolute measurement of the specific heat and of the thermal conductivity. AIP Advances (2012) 2, 012135. https://doi.org/10.1063/1.3684962 [NASA ADS] [CrossRef] [Google Scholar]
- Naik GV, Kim J, Boltasseva A, Oxides and nitrides as alternative plasmonic materials in the optical range. Opt. Mater. Express (2011) 1, 1090. https://doi.org/10.1364/OME.1.001090 [CrossRef] [Google Scholar]
- Naik GV, Schroeder JL, Ni X, Kildishev AV, Sands TD, Boltasseva A, Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Opt. Mater. Express (2012) 2, 478. https://doi.org/10.1364/OME.2.000478 [CrossRef] [Google Scholar]
- Naik GV, Shalaev VM, Boltasseva A, Alternative Plasmonic Materials: Beyond Gold and Silver. Adv. Mater. (2013) 25, 3264. https://doi.org/10.1002/adma.201205076 [CrossRef] [Google Scholar]
- Wang, J., Yin, C., Zhu, M., Sun, J., Yi, K., Shao, J.: Wide angle and broadband perfect absorber with compact multilayer structures. Mod. Phys. Lett. B. 31, 1750136 (2017) [Google Scholar]
- Venugopal N, Gerasimov VS, Ershov AE, Karpov SV, Polyutov SP, Titanium nitride as light trapping plasmonic material in silicon solar cell. Opt. Mater (2017) 72, 397–402. https://doi.org/10.1016/j.optmat.2017.06.035 [NASA ADS] [CrossRef] [Google Scholar]
- Yu, H., Tan, T., Wu, W., Tian, C., An, Y., Sun, F.: Thermal stability of titanium nitride coatings prepared by the mixing technology with laser and plasma. Curr. Appl. Phys. 12, 152–154 (2012) [Google Scholar]
- Liu Y, Mandelis A, Choy M, Wang C, Lee S, Remote quantitative temperature and thickness measurements of plasma-deposited titanium nitride thin coatings on steel using a laser interferometric thermoreflectance optical thermometer. Rev. Sci. Instrum. (2005) 76, 084902. https://doi.org/10.1063/1.2001673 [CrossRef] [Google Scholar]
- Abb M, Sepu’lveda B, Chong MH, Muskens OL, Transparent conducting oxides for active hybrid metamaterial devices. J. Opt (2012) 14, 114007–114001. https://doi.org/10.1088/2040-8978/14/11/114007 [NASA ADS] [CrossRef] [Google Scholar]
- Rajak S, Ray M, Comparative study of plasmonic resonance in transparent conducting oxides: ITO and AZO. J. Opt. (2014) 43, 231. https://doi.org/10.1007/s12596-014-0215-8 [CrossRef] [Google Scholar]
- You J-B, Lee W-J, Won D, Yu K, Multiband perfect absorbers using metal-dielectric films with optically dense medium for angle and polarization insensitive operation. OPTICS EXPRESS (2014) 22, 8339. https://doi.org/10.1364/OE.22.008339 [NASA ADS] [CrossRef] [Google Scholar]
- Kuo, C.-C.: International Scholarly and Scientific Research & Innovation. 7, 570–572 (2013) [Google Scholar]
- Scalora M, Bloemer MJ, Pethel AS, Dowling JP, Bowden CM, Manka AS, Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures. J. Appl. Phys. (1998) 83, 2377. https://doi.org/10.1063/1.366996 [CrossRef] [Google Scholar]
- Sarto MS, Li Voti R, Sarto F, Larciprete MC, Nanolayered lightweight flexible shields with multidirectional optical transparency. IEEE Transactions on Electromagnetic Compatibility (2005) 47, 602–611. https://doi.org/10.1109/TEMC.2005.853214 [CrossRef] [Google Scholar]
- Li Voti R, Larciprete MC, Leahu G, Sibilia C, Bertolotti M, Optical response of multilayer thermochromic VO2-based structures. Journal of Nanophotonics (2012) 6, 061601. https://doi.org/10.1117/1.JNP.6.061601 [Google Scholar]
- Cesarini, G., Leahu, G., Grilli, M.L., Sytchkova, A., Sibilia, C., Voti, R.L.: Optical and photoacoustic investigation of AZO/Ag/AZO transparent conductive coating for solar cells. Phys. Status Solidi C. 13, 998–1001 (2016) [Google Scholar]
- Pflüger J, Fink J, Weber W, Bohnen KP, Crecelius G, Dielectric properties of TiCx, TiNx, VCx, and VNx from 1.5 to 40 eV determined by electron-energy-loss spectroscopy. Phys. Rev. B (1984) 30, 1155–1163. https://doi.org/10.1103/PhysRevB.30.1155 [Google Scholar]
- Yuste M, Escobar Galindo R, Sánchez O, Cano D, Casasola R, Albella JM, Correlation between structure and optical properties in low emissivity coatings for solar thermal collectors. Thin Solid Films (2010) 518, 5720. https://doi.org/10.1016/j.tsf.2010.05.056 [NASA ADS] [CrossRef] [Google Scholar]
- Briggs JA, Naik GV, Yang Z, Petach TA, Sahasrabuddhe K, Gordon DG, Melosh NA, Dionne JA, Temperature-dependent optical properties of titanium nitride. Appl. Phys. Lett. (2017) 110, 101901. https://doi.org/10.1063/1.4977840 [NASA ADS] [CrossRef] [Google Scholar]
- Palik ED, Handbook of Optical Constants of Solids (1985) New YorkAcademic Press [Google Scholar]
- Holland, J.H.: Outline for a Logical Theory of Adaptive Systems. J. Assoc. Comput. Mach. 3, 297–314 (1962) [Google Scholar]
- Rosenberg, R.S.: Simulation of genetic populations with biochemical properties : I. The model. Math. Biosci. 7, 223–257 (1970) [Google Scholar]
- Rosenberg RS, Simulation of genetic populations with biochemical properties: II. Selection of crossover probabilities. Math. Biosci (1970) 8, 1–37. https://doi.org/10.1016/0025-5564(70)90140-9 [CrossRef] [Google Scholar]
- David Edward Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Publisher: Addison-Wesley Professional; 1 edition (Jan. 1 1989) ISBN-10: 0201157675, ISBN-13: 978-0201157673. [Google Scholar]
- Etter DM, Hicks MJ, Cho KH, Recursive adaptive filter design using an adaptive genetic algorithm. IEEE Int Conference Acoustics Speech Signal Proc (1982) 2, 635–638. https://doi.org/10.1109/ICASSP.1982.1171777 [CrossRef] [Google Scholar]
- Goldberg D.E., “Computer-aided gas pipeline operation using genetic algorithms and rule learning”, Dissertation Abstracts International 44 (10) 3174b (1983). DOI (doi:https://doi.org/10.1234/12345678). or a PubMed ID (pmid:12345678). [Google Scholar]
- Skaar, J., Risvik, K.M.: A Genetic Algorithm for the Inverse Problem in Synthesis of Fiber Gratings. J. Lightwave Technol. 16, 1928–1932 (1998) [Google Scholar]
- Lienert BR, Porter JN, Sharma SK, Repetitive genetic inversion of optical extinction data. Appl. Opt (2001) 40, 3476–3482. https://doi.org/10.1364/AO.40.003476 [NASA ADS] [CrossRef] [Google Scholar]
- Li Voti, R.: Inverse problems by Genetic Algorithms: application to the photothermal depth profiling. In: Maldague, X., ASNT (eds.) IV International Workshop - Advances in Signal Processing for Nondestructive Evaluation of Materials, vol. 6, pp. 31–41. Published by The American Society Nondestructive Testing Inc. (2002) ISBN: 1-57117-091-X [Google Scholar]
- Li Voti, R., Melchiorri, C., Sibilia, C., Bertolotti, M.: Use of the Genetic Algorithms in the Photothermal Depth Profiling. Anal. Sci. 17, s410–s413 (2001). https://doi.org/10.14891/analscisp.17icpp.0.s410.0 [Google Scholar]
- Li Voti, R., Sibilia, C., Bertolotti, M.: Photothermal depth profiling by thermal wave backscattering and genetic algorithms. Int. J. Thermophys. 26, 1833–1848 (2005) [Google Scholar]
- Born M, Wolf E, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (1964) OxfordPergamon Press [Google Scholar]
- Leahu, G., Petronijevic, E., Belardini, A., Centini, M., Li Voti, R., Hakkarainen, T., Koivusalo, E., Guina, M., Sibilia, C.: Photo-acoustic spectroscopy revealing resonant absorption of self-assembled GaAs-based nanowires. Sci. Rep. 7, 2833 (2017) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.