Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 13, Number 1, 2017
Article Number 8
Number of page(s) 7
DOI https://doi.org/10.1186/s41476-017-0036-x
Published online 08 March 2017
  1. Bohr N, Das Quantenpostulat und die neuere Entwicklung der Atomistik. Naturwissenschaften (1928) 16, 245. https://doi.org/10.1007/BF01504968 [NASA ADS] [CrossRef] [Google Scholar]
  2. Glauber RJ, The Quantum Theory of Optical Coherence. Phys. Rev (1963) 130, 2529. https://doi.org/10.1103/PhysRev.130.2529 [NASA ADS] [CrossRef] [Google Scholar]
  3. Jaeger G, Shimony A, Vaidman L, Two interferometric complementarities. Phys. Rev. A (1995) 51, 54. https://doi.org/10.1103/PhysRevA.51.54 [NASA ADS] [CrossRef] [Google Scholar]
  4. Englert BG, Fringe Visibility and Which-Way Information: An Inequality. Phys. Rev. Lett (1996) 77, 2154. https://doi.org/10.1103/PhysRevLett.77.2154 [NASA ADS] [CrossRef] [Google Scholar]
  5. Greenberger DM, Yasin A, Simultaneous wave and particle knowledge in a neutron interferometer. Phys. Lett. A (1988) 128, 391. https://doi.org/10.1016/0375-9601(88)90114-4 [NASA ADS] [CrossRef] [Google Scholar]
  6. Mandel L, Coherence and indistinguishabilityOpt. Lett (1991) 16, 1182. https://doi.org/10.1364/OL.16.001882 [NASA ADS] [CrossRef] [Google Scholar]
  7. Ribeiro PHS, Monken CH, Barbosa GA, Measurement of coherence area in parametric downconversion luminescence. Appl. Opt (1994) 33, 352. https://doi.org/10.1364/AO.33.000352 [NASA ADS] [CrossRef] [Google Scholar]
  8. Joobeur A, Saleh BEA, Teich MC, Spatiotemporal coherence properties of entangled light beams generated by parametric down-conversion. Phys. Rev. A (1994) 50, 3349. https://doi.org/10.1103/PhysRevA.50.3349 [CrossRef] [Google Scholar]
  9. Joobeur A, Saleh BEA, Larchuk TS, Teich MC, Coherence properties of entangled light beams generated by parametric down-conversion: Theory and experiment. Phys. Rev. A (1996) 53, 4360. https://doi.org/10.1103/PhysRevA.53.4360 [NASA ADS] [CrossRef] [Google Scholar]
  10. Just F, Cavanna A, Chekhova MV, Leuchs G, Transverse entanglement of biphotons. New J. Phys (2013) 15, 083015. https://doi.org/10.1088/1367-2630/15/8/083015 [CrossRef] [Google Scholar]
  11. Paul EC, Hor-Meyll M, Ribeiro PHS, Walborn SP, Measuring spatial correlations of photon pairs by automated raster scanning with spatial light modulators. Sci. Rep (2014) 4, 5337. [NASA ADS] [CrossRef] [Google Scholar]
  12. Jost BM, Sergienko AV, Abouraddy AF, Saleh BEA, Teich MC, Spatial correlations of spontaneously down-converted photon pairs detected with a single-photon-sensitive CCD camera. Opt. Express (1998) 3, 81. https://doi.org/10.1364/OE.3.000081 [NASA ADS] [CrossRef] [Google Scholar]
  13. Lorenzo Pires HDi, Monken CH, van Exter MP, Direct measurement of transverse-mode entanglement in two-photon states. Phys. Rev. A (2009) 80, 022307. https://doi.org/10.1103/PhysRevA.80.022307 [NASA ADS] [CrossRef] [Google Scholar]
  14. Straupe SS, Ivanov DP, Kalinkin AA, Bobrov IB, Kulik SP, Angular Schmidt modes in spontaneous parametric down-conversion. Phys. Rev. A (2011) 83, 060302(R). https://doi.org/10.1103/PhysRevA.83.060302 [NASA ADS] [CrossRef] [Google Scholar]
  15. Miatto FM, Lorenzo Pires HDi, Barnett SM, van Exter MP, Spatial Schmidt modes generated in parametric down-conversion. Eur. Phys. J. D (2012) 66, 263. https://doi.org/10.1140/epjd/e2012-30035-3 [NASA ADS] [CrossRef] [Google Scholar]
  16. Peres AM, Sharapova PR, Straupe SS, Miatto FM, Tikhonova OV, Leuchs G, Chekhova MV, Projective filtering of the fundamental eigenmode from spatially multimode radiation. Phys. Rev. A (2015) 92, 053861. https://doi.org/10.1103/PhysRevA.92.053861 [NASA ADS] [CrossRef] [Google Scholar]
  17. Menzel R, Ostermeyer M, Fundamental mode determination for guaranteeing diffraction limited beam quality of lasers with high output powers. Opt. Comm (1998) 149, 321. https://doi.org/10.1016/S0030-4018(97)00738-4 [NASA ADS] [CrossRef] [Google Scholar]
  18. Heuer A, Menzel R, Milonni PW, Induced Coherence, Vacuum Fields, and Complementarity in Biphoton Generation. Phys. Rev. Lett (2015) 114, 053601. https://doi.org/10.1103/PhysRevLett.114.053601 [NASA ADS] [CrossRef] [Google Scholar]
  19. Milonni PW, Fearn H, Zeilinger A, Theory of two-photon down-conversion in the presence of mirrors. Phys. Rev. A (1996) 53, 4556. https://doi.org/10.1103/PhysRevA.53.4556 [NASA ADS] [CrossRef] [Google Scholar]
  20. Ling A, Lamas-Linares A, Kurtsiefer C, Absolute emission rates of spontaneous parametric down-conversion into single transverse Gaussian modes. Phys. Rev. A (2008) 77, 043834. https://doi.org/10.1103/PhysRevA.77.043834 [CrossRef] [Google Scholar]
  21. Elsner R, Puhlmann D, Pieplow G, Heuer A, Menzel R, Transverse distinguishability of entangled photons with arbitrarily shaped spatial near- and far-field distributions. JOSA B (2015) 32, 1910. https://doi.org/10.1364/JOSAB.32.001910 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.