Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 13, Number 1, 2017
Article Number 7
Number of page(s) 9
DOI https://doi.org/10.1186/s41476-017-0034-z
Published online 28 February 2017
  1. Mikhailov S, Ziegler K, New electromagnetic mode in graphene. Phys. Rev. Lett. (2007) 99, 016803. https://doi.org/10.1103/PhysRevLett.99.016803 [NASA ADS] [CrossRef] [Google Scholar]
  2. Ziegler K, Robust transport properties in graphene. Phys. Rev. Lett. (2006) 97, 266802. https://doi.org/10.1103/PhysRevLett.97.266802 [NASA ADS] [CrossRef] [Google Scholar]
  3. Avouris P, Freitag M, Graphene photonics, plasmonics, and optoelectronics. IEEE J. Sel. Top. Quantum Electron. (2014) 1, 6000112. [Google Scholar]
  4. Hua-Qiang W, Chang-Yang L, Hong-Ming L, He Q, Graphene applications in electronic and optoelectronic devices and circuits. Chinese Physics B (2013) 22, 098106. https://doi.org/10.1088/1674-1056/22/9/098106 [NASA ADS] [CrossRef] [Google Scholar]
  5. Kuila T, Bose S, Khanra P, Mishra AK, Kim NH, Lee JH, Recent advances in graphene-based biosensors. Biosens. Bioelectron. (2011) 26, 4637–4648. https://doi.org/10.1016/j.bios.2011.05.039 [CrossRef] [Google Scholar]
  6. Grushin AG, Valenzuela B, Vozmediano MA, Effect of Coulomb interactions on the optical properties of doped graphene. Phys. Rev. B (2009) 80, 155417. https://doi.org/10.1103/PhysRevB.80.155417 [CrossRef] [Google Scholar]
  7. Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NM, Geim AK, Fine structure constant defines visual transparency of graphene. Science (2008) 320, 1308–1308. https://doi.org/10.1126/science.1156965 [Google Scholar]
  8. Gusynin V, Sharapov S, Carbotte J, Anomalous absorption line in the magneto-optical response of graphene. Phys. Rev. Lett. (2007) 98, 157402. https://doi.org/10.1103/PhysRevLett.98.157402 [NASA ADS] [CrossRef] [Google Scholar]
  9. He X, Zhong X, Lin F, Shi W, Investigation of graphene assisted tunable terahertz metamaterials absorber. Optical Materials Express (2016) 6, 331–342. https://doi.org/10.1364/OME.6.000331 [NASA ADS] [CrossRef] [Google Scholar]
  10. D’Aloia A, Marra F, Tamburrano A, De Bellis G, Sarto MS, Electromagnetic absorbing properties of graphene–polymer composite shields. Carbon (2014) 73, 175–184. https://doi.org/10.1016/j.carbon.2014.02.053 [CrossRef] [Google Scholar]
  11. Batrakov K, Kuzhir P, Maksimenko S, Paddubskaya A, Voronovich S, Lambin P, Kaplas T, Svirko Y, Flexible transparent graphene/polymer multilayers for efficient electromagnetic field absorption. Sci. Rep. (2014) 4, 7191. https://doi.org/10.1038/srep07191 [NASA ADS] [CrossRef] [Google Scholar]
  12. Koppens FH, Chang DE, Garcia de Abajo FJ, Graphene plasmonics: a platform for strong light–matter interactions. Nano Lett. (2011) 11, 3370–3377. https://doi.org/10.1021/nl201771h [NASA ADS] [CrossRef] [Google Scholar]
  13. Zhu B, Ren G, Zheng S, Lin Z, Jian S, Nanoscale dielectric-graphene-dielectric tunable infrared waveguide with ultrahigh refractive indices. Opt. Express (2013) 21, 17089–17096. https://doi.org/10.1364/OE.21.017089 [NASA ADS] [CrossRef] [Google Scholar]
  14. Zhukovsky SV, Andryieuski A, Sipe JE, Lavrinenko AV, From surface to volume plasmons in hyperbolic metamaterials: general existence conditions for bulk high-k waves in metal-dielectric and graphene-dielectric multilayers. Phys. Rev. B (2014) 90, 155429. https://doi.org/10.1103/PhysRevB.90.155429 [CrossRef] [Google Scholar]
  15. Nefedov IS, Valaginnopoulos CA, Melnikov LA, Perfect absorption in graphene multilayers. J. Opt. (2013) 15, 114003. https://doi.org/10.1088/2040-8978/15/11/114003 [NASA ADS] [CrossRef] [Google Scholar]
  16. Andryieuski A, Khromova I, Zhukovsky SV, Lavrinenko AV, Graphene-Enhanced Metamaterials for THz Applications. Fundamental and Applied Nano-Electromagnetics (2016) DordrechtSpringer Netherlands145–169. https://doi.org/10.1007/978-94-017-7478-9_8 [CrossRef] [Google Scholar]
  17. Othman MA, Guclu C, Capolino F, Graphene–dielectric composite metamaterials: evolution from elliptic to hyperbolic wavevector dispersion and the transverse epsilon-near-zero condition. J. Nanophotonics (2013) 7, 073089–073089. https://doi.org/10.1117/1.JNP.7.073089 [NASA ADS] [CrossRef] [Google Scholar]
  18. Fan S, Joannopoulos JD, Analysis of guided resonances in photonic crystal slabs. Phys. Rev. B (2002) 65, 235112. https://doi.org/10.1103/PhysRevB.65.235112 [NASA ADS] [CrossRef] [Google Scholar]
  19. Berreman DW, Optics in stratified and anisotropic media: 4× 4-matrix formulation. Josa (1972) 62, 502–510. https://doi.org/10.1364/JOSA.62.000502 [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.