Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 12, Number 1, 2016
Article Number 26
Number of page(s) 5
DOI https://doi.org/10.1186/s41476-016-0022-8
Published online 13 December 2016
  1. Bristow AD, Rotenberg N, Van Driel HM, Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm. Appl. Phys. Lett. (2007) 90, 191104–191104. https://doi.org/10.1063/1.2737359 [NASA ADS] [CrossRef] [Google Scholar]
  2. Liang T, Nunes L, Tsuchiya M, Abedin K, Miyazaki T, Van Thourhout D, Bogaerts W, Dumon P, Baets R, Tsang H, High speed logic gate using two-photon absorption in silicon waveguides. Opt. Commun (2006) 265, 171–174. https://doi.org/10.1016/j.optcom.2006.03.031 [NASA ADS] [CrossRef] [Google Scholar]
  3. Boitier F, Dherbecourt J-B, Godard A, Rosencher E, Infrared quantum counting by nondegenerate two photon conductivity in GaAs. Appl. Phys. Lett. (2009) 94, 081112. https://doi.org/10.1063/1.3089380 [NASA ADS] [CrossRef] [Google Scholar]
  4. Lee CH, Jayaraman S, Measurement of ultrashort optical pulses by two-photon photoconductivity techniques. Opto-electron (1974) 6, 115–120. https://doi.org/10.1007/BF01421993 [Google Scholar]
  5. Boitier F, Godard A, Rosencher E, Fabre C, Measuring photon bunching at ultrashort timescale by two-photon absorption in semiconductors. Nat. Phys (2009) 5, 267–270. https://doi.org/10.1038/nphys1218 [CrossRef] [Google Scholar]
  6. Kikuchi K, Optical sampling system at 1.5 mu;m using two photon absorption in Si avalanche photodiode. Electron. Lett (1998) 34, 1354–1355. https://doi.org/10.1049/el:19980936 [NASA ADS] [CrossRef] [Google Scholar]
  7. Roth JM, Murphy T, Xu C, Ultrasensitive and high-dynamic-range two-photon absorption in a GaAs photomultiplier tube. Opt. Lett (2002) 27, 2076–2078. https://doi.org/10.1364/OL.27.002076 [NASA ADS] [CrossRef] [Google Scholar]
  8. Fishman DA, Cirloganu CM, Webster S, Padilha LA, Monroe M, David JH, Van Stryland EW, Sensitive mid-infrared detection in wide-bandgap semiconductors using extreme non-degenerate two-photon absorption. Nat. Photon (2011) 5, 561–565. https://doi.org/10.1038/nphoton.2011.168 [CrossRef] [Google Scholar]
  9. Sheik-Bahae M, Said AA, Wei T-H, Hagan DJ, Van Stryland EW, Sensitive measurement of optical nonlinearities using a single beam. Quantum Electron. IEEE J (1990) 26, 760–769. https://doi.org/10.1109/3.53394 [NASA ADS] [CrossRef] [Google Scholar]
  10. Vest, B, Lucas, E, Jaeck, J, Haidar, R, Rosencher, E: Silicon sub-bandgap photon linear detection in two-photon experiments: A photo-assisted Shockley-Read-Hall mechanism, Vol. 102 (2013). [Google Scholar]
  11. Dvorak M, Schroeder W, Andersen D, Smirl A, Wherrett B, Measurement of the anisotropy of two-photon absorption coefficients in zincblende semiconductors. Quantum Electron (1994) 30, 256–268. https://doi.org/10.1109/3.283768 [NASA ADS] [CrossRef] [Google Scholar]
  12. Portier B, Vest B, Pardo F, Péré-Laperne N, Steveler E, Jaeck J, Dupuis C, Bardou N, Lemaitre A, Rosencher E, et al.Resonant metallic nanostructure for enhanced two-photon absorption in a thin GaAs pin diode. Appl. Phys. Lett. (2014) 105, 011108. https://doi.org/10.1063/1.4887375 [NASA ADS] [CrossRef] [Google Scholar]
  13. Capasso F, Sirtori C, Cho AY, Coupled quantum well semiconductors with giant electric field tunable nonlinear optical properties in the infrared. Quantum Electron. IEEE J (1994) 30, 1313–1326. https://doi.org/10.1109/3.303697 [NASA ADS] [CrossRef] [Google Scholar]
  14. Soljačić M, Joannopoulos JD, Enhancement of nonlinear effects using photonic crystals. Nat. Mater (2004) 3, 211–219. https://doi.org/10.1038/nmat1097 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.