Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 12, Number 1, 2016
|
|
---|---|---|
Article Number | 2 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1186/s41476-016-0002-z | |
Published online | 23 June 2016 |
- Vörös L, Mózes A, Somogyi B, “A five-year study of autotrophic winter picoplankton in lake Balaton, Hungary”. Aquat. Ecol. (2009) 43, 727–734. https://doi.org/10.1007/s10452-009-9272-5 [CrossRef] [Google Scholar]
- Kazemzadeh, F., Jin, C., Yu, M., Amelard R., Haider, S., Saini, S., Emelko, M., Clausi, D.A., Wong, A.:“Multispectral digital holographic microscopy with applications in water quality assessment”, (SPIE Optical Engineering + Applications, 957906) (2015). [Google Scholar]
- Rosen J, Brooker G, “Digital spatially incoherent Fresnel holography”. Opt. Lett. (2007) 32, 912–914. https://doi.org/10.1364/OL.32.000912 [NASA ADS] [CrossRef] [Google Scholar]
- Lohmann AW, “Wavefront reconstruction for incoherent objects”. J. Opt. Soc. Am. (1965) 55, 1555–1556. https://doi.org/10.1364/JOSA.55.001555 [NASA ADS] [CrossRef] [Google Scholar]
- Kiss MZ, Nagy BJ, Lakatos P, Göröcs Z, Tőkés S, Wittner B, Orzó L, “Special multicolor illumination and numerical tilt correction in volumetric digital holographic microscopy”. Opt. Express (2014) 22, 7559–7573. https://doi.org/10.1364/OE.22.007559 [NASA ADS] [CrossRef] [Google Scholar]
- Göröcs Z, Ozcan A, “On-chip biomedical imaging”. IEEE Rev. Biomed. Eng. (2013) 6, 29–46. https://doi.org/10.1109/RBME.2012.2215847 [CrossRef] [Google Scholar]
- Grare S, Allano D, Coëtmellec S, Perret G, Corbin F, Brunel M, Gréhan G, Lebrun D, “Dual-wavelength digital holography for 3D particle image velocimetry: experimental validation”. Appl. Optics (2016) 55, A49–A53. https://doi.org/10.1364/AO.55.000A49 [NASA ADS] [CrossRef] [Google Scholar]
- Zhang Y, LĂĽ Q, Ge B, “Elimination of zero-order diffraction in digital off-axis holography”. Opt. Commun. (2004) 240, 261–267. https://doi.org/10.1016/j.optcom.2004.06.040 [NASA ADS] [CrossRef] [Google Scholar]
- Orzó L, “High speed phase retrieval of in-line holograms by the assistance of corresponding off-axis holograms”. Opt. Express (2015) 23, 16638–16649. https://doi.org/10.1364/OE.23.016638 [CrossRef] [Google Scholar]
- Qin Y, Zhong J, “Quality evaluation of phase reconstruction in led-based digital holography”. Chin. Opt. Lett. (2009) 7, 1146–1150. https://doi.org/10.3788/COL20090712.1146 [CrossRef] [Google Scholar]
- Gabor D, “A new microscopic principle”. Nature (1948) 161, 777–778. https://doi.org/10.1038/161777a0 [CrossRef] [PubMed] [Google Scholar]
- Gabor D, “Microscopy by reconstructed wave-fronts”. Proc. R. Soc. Lond. A Math. Phys. Sci. (1949) 197, 454–487. https://doi.org/10.1098/rspa.1949.0075 [Google Scholar]
- Man T, Wan Y, Wu F, Wang D, “Axial localization of fluorescence samples using single-shot self-interference digital holography”. Digital Holography & 3-D Imaging Meeting of OSA, DM2A5 (2015) [Google Scholar]
- Kim MK, “Full color natural light holographic camera”. Opt. Express (2013) 21, 9636–9642. https://doi.org/10.1364/OE.21.009636 [NASA ADS] [CrossRef] [Google Scholar]
- Mertz L, Young N, “Fresnel transformations of images”. SPIE milestone series ms (1996) 128, 44–49. [Google Scholar]
- Kiss, M. Zs., Göröcs, Z., Tőkés Sz.:“Self-referenced digital holographic microscopy”. In: Cellular Nanoscale Networks and Their Applications CNNA, 2012 13th International Workshop on, 1–4, (IEEE, 2012). [Google Scholar]
- Wan Y, Man T, Wang D, “Incoherent off-axis fourier triangular color holography”. Opt. Express (2014) 22, 8565–8573. https://doi.org/10.1364/OE.22.008565 [NASA ADS] [CrossRef] [Google Scholar]
- Rosen J, Brooker G, “Fluorescence incoherent color holography”. Opt. Express (2007) 15, 2244–2250. https://doi.org/10.1364/OE.15.002244 [CrossRef] [Google Scholar]
- Katz B, Rosen J, Kelner R, Brooker G, “Enhanced resolution and throughput of fresnel incoherent correlation holography (finch) using dual diffractive lenses on a spatial light modulator (slm)”. Opt. Express (2012) 20, 9109–9121. https://doi.org/10.1364/OE.20.009109 [CrossRef] [Google Scholar]
- Wang P, “Self-interference low-coherent digital holography by engineered volume holographic pupils”. Digital Holography & 3-D Imaging Meeting of OSA, DT3A7 (2015) [Google Scholar]
- Sirat G, Psaltis D, “Conoscopic holography”. Opt. Lett. (1985) 10, 4–6. https://doi.org/10.1364/OL.10.000004 [NASA ADS] [CrossRef] [Google Scholar]
- Rosen J, Kelner R, “Modified lagrange invariants and their role in determining transverse and axial imaging resolutions of self-interference incoherent holographic systems”. Opt. Express (2014) 22, 29048–29066. https://doi.org/10.1364/OE.22.029048 [NASA ADS] [CrossRef] [Google Scholar]
- Lin YC, Cheng CJ, Poon TC, “Optical sectioning with a low-coherence phase-shifting digital holographic microscope”. Appl. Optics (2011) 50, B25–B30. https://doi.org/10.1364/AO.50.000B25 [NASA ADS] [CrossRef] [Google Scholar]
- M. Zs. Kiss, “A new compact self-referenced holographic setup tested on a fluorescent target”, In Digital Holography & 3-D Imaging Meeting of OSA, DTh1A7 (2015) [Google Scholar]
- Shen F, Wang A, “Fast-Fourier-transform based numerical integration method for the Rayleigh-Sommerfeld diffraction formula”. Appl. Opt. (2006) 45, 1102–1110. https://doi.org/10.1364/AO.45.001102 [NASA ADS] [CrossRef] [Google Scholar]
- Davis I, “The super-resolution revolution”. Biochem. Soc. Trans. (2009) 37, 1042–1044. https://doi.org/10.1042/BST0371042 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.