Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 12, Number 1, 2016
Article Number 1
Number of page(s) 7
DOI https://doi.org/10.1186/s41476-016-0001-0
Published online 23 June 2016
  1. Joannopulos JD, Mead RD, Winn JN, Photonic crystal: Molding the flow of light (1995) PrincetonPrinceton University Press [Google Scholar]
  2. Notomi M, Theory of light propagation in strongly modulated photonic crystals: Refraction like behavior in the vicinity of the photonic band gap. Phys. Rev. B. (2000) 62, 10696–10705. https://doi.org/10.1103/PhysRevB.62.10696 [Google Scholar]
  3. Mocella V, Negative refraction in Photonic Crystals: thickness dependence and Pendellösung phenomenon. Opt. Express (2005) 13, 1361–1367. https://doi.org/10.1364/OPEX.13.001361 [NASA ADS] [CrossRef] [Google Scholar]
  4. Jellison GE, Burke HH, The temperature dependence of the refractive index of silicon at elevated temperatures at several laser wavelengths. J. Appl. Phys. (1986) 60, 841–843. https://doi.org/10.1063/1.337386 [CrossRef] [Google Scholar]
  5. Cocorullo G, Rendina I, Thermo-optical modulation at 1.5 μm in silicon etalon. Electron Lett. (1992) 28, 183–85. https://doi.org/10.1049/el:19920051 [NASA ADS] [CrossRef] [Google Scholar]
  6. Mocella V, Dardano P, Moretti L, Rendina I, A polarizing beam splitter using negative refraction of photonic crystals. Opt. Express. (2005) 13, 197699. https://doi.org/10.1364/OPEX.13.007699 [NASA ADS] [CrossRef] [Google Scholar]
  7. Dardano, P. et al.; “Negative refraction devices based on self-collimating photonic crystals.” Proceedings of SPIE, the International Society for Optical Engineering. Society of Photo-Optical Instrumentation Engineers, (2007). [Google Scholar]
  8. Dardano P, et al.Investigation of a tunable T-shaped waveguide based on a silicon 2D photonic crystal. J. Opt. A Pure Appl. Opt. (2006) 8, S554. https://doi.org/10.1088/1464-4258/8/7/S40 [NASA ADS] [CrossRef] [Google Scholar]
  9. Peirs J, Reynaerts D, Brussel HV, Scale effects and thermal considerations for micro-actuators (1998) BelgiumInternational Conference on Robotics & Automation Leuvenhttps://doi.org/10.1109/ROBOT.1998.677333 [Google Scholar]
  10. Wang ZL, Tang DW, Investigation of heat transfer around microwire in air environment using 3ω method. Int. J. Therm. Sci. (2013) 64, 145–151. https://doi.org/10.1016/j.ijthermalsci.2012.08.002 [CrossRef] [Google Scholar]
  11. Faghri A, Zhang Y, Howell JR, Advanced Heat and Mass Transfer (2010) Columbia, MOGlobal Digital Press [Google Scholar]
  12. Kyoung Joon K, King WP, Thermal conduction between a heated microcantilever and a surrounding air environment. Appl. Therm. Eng. (2009) 29, 81631–1641. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.