Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 12, Number 1, 2016
Article Number 15
Number of page(s) 8
DOI https://doi.org/10.1186/s41476-016-0017-5
Published online 01 October 2016
  1. Liu J, Dai J, Chin SL, Zhang XC, Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases”. Nat. Photonics. (2010) 4, 627–631. https://doi.org/10.1038/nphoton.2010.165 [CrossRef] [Google Scholar]
  2. Fukunaga K, Sekine N, Hosako I, Oda N, Yoneyama H, Sudou T, Real-time terahertz imaging for art conservation science”. J. Eur. Opt. Soc. Rapid Publ. (2008) 3, 08027. https://doi.org/10.2971/jeos.2008.08027 [CrossRef] [Google Scholar]
  3. Kawase K, Ogawa Y, Watanabe Y, Inoue H, Non-destructive terahertz imaging of illicit drugs using spectral fingerprints”. Opt. Express. (2003) 11, 2549–2554. https://doi.org/10.1364/OE.11.002549 [NASA ADS] [CrossRef] [Google Scholar]
  4. Mizuno M, Fukunaga K, Saito S, Hosako I, Analysis of calcium carbonate for differentiating between pigments using terahertz spectroscopy”. J. Eur. Opt. Soc. Rapid Publ. (2009) 4, 09044. https://doi.org/10.2971/jeos.2009.09044 [CrossRef] [Google Scholar]
  5. Wallace VP, Fitzgerald AJ, Shankar S, Flanagan N, Pye R, Cluff J, Arnone DD, Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo”. Br. J. Dermatol. (2004) 151, 424–432. https://doi.org/10.1111/j.1365-2133.2004.06129.x [CrossRef] [Google Scholar]
  6. Zaytsev KI, Kudrin KG, Karasik VE, Reshetov IV, Yurchenko SO, In vivo terahertz spectroscopy of pigmentary skin nevi: Pilot study of non-invasive early diagnosis of dysplasia”. Appl. Phys. Lett. (2015) 106, 053702. https://doi.org/10.1063/1.4907350 [NASA ADS] [CrossRef] [Google Scholar]
  7. Reid CB, Fitzgerald A, Reese G, Goldin R, Tekkis P, O'Kelly PSE, MacPherson P, Gibson AP, Wallace VP, “Terahertz pulsed imaging of freshly excised human colonic tissues”. Phys. Med. Biol. (2011) 56, 4333. https://doi.org/10.1088/0031-9155/56/14/008 [NASA ADS] [CrossRef] [Google Scholar]
  8. Ashworth PC, MacPherson EP, Provenzano E, Pinder SE, Purushotham AD, Pepper M, Wallace VP, Terahertz pulsed spectroscopy of freshly excised human breast cancer”. Opt. Express. (2009) 17, 12444–12454. https://doi.org/10.1364/OE.17.012444 [NASA ADS] [CrossRef] [Google Scholar]
  9. Chen NN, Liang J, Ren LY, High-birefringence, low-loss porous fiber for single-mode terahertz-wave guidance”. Appl. Opt. (2013) 52, 5297–5302. https://doi.org/10.1364/AO.52.005297 [NASA ADS] [CrossRef] [Google Scholar]
  10. Harris DJ, Lee KW, Batt RJ, Low-loss single-mode waveguide for submillimetre and millimetre wavelengths”. Infrared. Phys. (1978) 18, 741–747. https://doi.org/10.1016/0020-0891(78)90097-0 [NASA ADS] [CrossRef] [Google Scholar]
  11. Mitrofanov O, Tan T, Mark PR, Bowden B, Harrington JA, Waveguide mode imaging and dispersion analysis with terahertz near-field microscopy”. Appl. Phys. Lett. (2009) 94, 171104. https://doi.org/10.1063/1.3126053 [NASA ADS] [CrossRef] [Google Scholar]
  12. Frankel MY, Gupta S, Valdmanis JA, Mourou GA, Terahertz attenuation and dispersion characteristics of coplanar transmission lines”. IEEE Trans. Microw. Theory Techn. (1991) 39, 910–916. https://doi.org/10.1109/22.81658 [NASA ADS] [CrossRef] [Google Scholar]
  13. Wang K, Mittleman DM, Metal wires for terahertz wave guiding”. Nature. (2004) 432, 376–379. https://doi.org/10.1038/nature03040 [NASA ADS] [CrossRef] [Google Scholar]
  14. Goto M, Quema A, Takahashi H, Ono S, Sarukura N, Teflon photonic crystal fiber as terahertz waveguide. Jpn. J. Appl. Phys. (2004) 43, L317–L319. https://doi.org/10.1143/JJAP.43.L317 [NASA ADS] [CrossRef] [Google Scholar]
  15. Han H, Park H, Cho M, Kim J, Terahertz pulse propagation in a plastic photonic crystal fiber”. Appl. Phys. Lett. (2002) 80, 2634–2636. https://doi.org/10.1063/1.1468897 [NASA ADS] [CrossRef] [Google Scholar]
  16. Tsuruda K, Fujita M, Nagatsuma T, Extremely low-loss terahertz waveguide based on silicon photonic-crystal slab”. Opt. Express. (2015) 23, 31977–31990. https://doi.org/10.1364/OE.23.031977 [NASA ADS] [CrossRef] [Google Scholar]
  17. Zaytsev KI, Katyba GM, Kurlov VN, Shikunova IA, Karasik VE, Yurchenko SO, Terahertz Photonic Crystal Waveguides Based on Sapphire Shaped Crystals”. IEEE Trans. Terahertz Sci. (2016) 6, 576–582. https://doi.org/10.1109/TTHZ.2016.2555981 [CrossRef] [Google Scholar]
  18. Atakaramians S, Afshar SV, Fischer BM, Abbott D, Monro TM, Porous fibers: a novel approach to low loss THz waveguides”. Opt. Express. (2008) 16, 8845–8854. https://doi.org/10.1364/OE.16.008845 [NASA ADS] [CrossRef] [Google Scholar]
  19. Bao HL, Nielsen K, Rasmussen HK, Jepsen PU, Bang O, Fabrication and characterization of porous-core honeycomb bandgap THz fibers”. Opt. Express. (2012) 20, 29507–29517. https://doi.org/10.1364/OE.20.029507 [NASA ADS] [CrossRef] [Google Scholar]
  20. Kaijage SF, Ouyang Z, Jin X, Porous-core photonic crystal fiber for low loss terahertz wave guiding”. IEEE Photon. Technol. Lett. (2013) 25, 1454–1457. https://doi.org/10.1109/LPT.2013.2266412 [NASA ADS] [CrossRef] [Google Scholar]
  21. Uthman M, Rahman BMA, Kejalakshmy N, Agarwal A, Grattan KTV, Design and characterization of low-loss photonic crystal fiber”. IEEE Photon. J. (2012) 4, 2315–2325. https://doi.org/10.1109/JPHOT.2012.2231939 [NASA ADS] [CrossRef] [Google Scholar]
  22. Hasan MR, Anower MS, Hasan MI, Razzak SMA, Polarization maintaining low-loss slotted core kagome lattice THz fiber”. IEEE Photon. Technol. Lett. (2016) 28, 1751–1754. https://doi.org/10.1109/LPT.2016.2569565 [NASA ADS] [CrossRef] [Google Scholar]
  23. Hasan MI, Razzak SMA, Hasanuzzaman GKM, Habib MS, Ultra-low material loss and dispersion flattened fiber for THz transmission”. IEEE Photon. Technol. Lett. (2014) 26, 2372–2375. https://doi.org/10.1109/LPT.2014.2356492 [NASA ADS] [CrossRef] [Google Scholar]
  24. Hassani A, Dupuis A, Skorobogatiy M, Low loss porous terahertz fibers containing multiple subwavelength holes”. Appl. Phys. Lett. (2008) 92, 071101. https://doi.org/10.1063/1.2840164 [NASA ADS] [CrossRef] [Google Scholar]
  25. Hasan MR, Anower MS, Islam MA, Razzak SMA, Polarization-maintaining low-loss porous-core spiral photonic crystal fiber for terahertz wave guidance”. Appl. Opt. (2016) 55, 4145–4152. https://doi.org/10.1364/AO.55.004145 [NASA ADS] [CrossRef] [Google Scholar]
  26. Poli F, Foroni M, Bottacini M, Fuochi M, Burani N, Rosa L, Cucinotta A, Selleri S, Single-mode regime of square-lattice photonic crystal fibers”. J. Opt. Soc. Am. A (2005) 22, 1655–1661. https://doi.org/10.1364/JOSAA.22.001655 [NASA ADS] [CrossRef] [Google Scholar]
  27. Bouk AH, Cucinotta A, Poli F, Selleri S, Dispersion properties of square-lattice photonic crystal fibers”. Opt. Express. (2004) 12, 941–946. https://doi.org/10.1364/OPEX.12.000941 [NASA ADS] [CrossRef] [Google Scholar]
  28. Russell PSJ, Marin E, Díez A, Guenneau S, Movchan AB, Sonic band gaps in PCF preforms: enhancing the interaction of sound and light”. Opt. Express. (2003) 11, 2555–2560. https://doi.org/10.1364/OE.11.002555 [NASA ADS] [CrossRef] [Google Scholar]
  29. Nielsen K, Rasmussen HK, Adam AJL, Planken CM, Bang PO, Jepsen PU, Bendable, low-loss topas fibers for the terahertz frequency range”. Opt. Express. (2009) 17, 8592–8601. https://doi.org/10.1364/OE.17.008592 [NASA ADS] [CrossRef] [Google Scholar]
  30. Liang J, Ren L, Chen N, Zhou C, Broadband, low-loss, dispersion flattened porous-core photonic bandgap fiber for terahertz (THz) wave propagation”. Opt. Commu. (2013) 295, 257–261. https://doi.org/10.1016/j.optcom.2013.01.010 [NASA ADS] [CrossRef] [Google Scholar]
  31. Islam R, Hasanuzzaman GKM, Habib MS, Rana S, Khan MAG, Low-loss rotated porous core hexagonal single-mode fiber in THz regime”. Opt. Fiber Technol. (2015) 24, 38–43. https://doi.org/10.1016/j.yofte.2015.04.006 [NASA ADS] [CrossRef] [Google Scholar]
  32. Heiblum M, Harris J, Analysis of curved optical waveguides by conformal transformation”. IEEE J. Quantum Electron. (1975) 11, 75–83. https://doi.org/10.1109/JQE.1975.1068563 [CrossRef] [Google Scholar]
  33. Antonov PI, Kurlov VN, New advances and developments in the Stepanov method for the growth of shaped crystals”. Crystallogr. Reports. (2002) 47, S43–S52. https://doi.org/10.1134/1.1529958 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.